你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-03 19:26:50 +08:00
autopep8 code cleanups.
这个提交包含在:
@@ -25,7 +25,7 @@ sys.path.insert(0, os.path.abspath('../..'))
|
||||
# -- General configuration ------------------------------------------------
|
||||
|
||||
# If your documentation needs a minimal Sphinx version, state it here.
|
||||
#needs_sphinx = '1.0'
|
||||
# needs_sphinx = '1.0'
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
@@ -35,7 +35,7 @@ extensions = [
|
||||
]
|
||||
|
||||
# autodoc mock imports
|
||||
#autodoc_mock_imports = ['h5py', 'matplotlib', 'pyfiglet', 'cython', 'psutil']
|
||||
# autodoc_mock_imports = ['h5py', 'matplotlib', 'pyfiglet', 'cython', 'psutil']
|
||||
|
||||
# Options for autodoc
|
||||
autodoc_default_flags = ['members']
|
||||
@@ -57,7 +57,7 @@ templates_path = ['_templates']
|
||||
source_suffix = '.rst'
|
||||
|
||||
# The encoding of source files.
|
||||
#source_encoding = 'utf-8-sig'
|
||||
# source_encoding = 'utf-8-sig'
|
||||
|
||||
# The master toctree document.
|
||||
master_doc = 'index'
|
||||
@@ -87,9 +87,9 @@ language = None
|
||||
|
||||
# There are two options for replacing |today|: either, you set today to some
|
||||
# non-false value, then it is used:
|
||||
#today = ''
|
||||
# today = ''
|
||||
# Else, today_fmt is used as the format for a strftime call.
|
||||
#today_fmt = '%B %d, %Y'
|
||||
# today_fmt = '%B %d, %Y'
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
@@ -97,27 +97,27 @@ exclude_patterns = ['_build']
|
||||
|
||||
# The reST default role (used for this markup: `text`) to use for all
|
||||
# documents.
|
||||
#default_role = None
|
||||
# default_role = None
|
||||
|
||||
# If true, '()' will be appended to :func: etc. cross-reference text.
|
||||
#add_function_parentheses = True
|
||||
# add_function_parentheses = True
|
||||
|
||||
# If true, the current module name will be prepended to all description
|
||||
# unit titles (such as .. function::).
|
||||
#add_module_names = True
|
||||
# add_module_names = True
|
||||
|
||||
# If true, sectionauthor and moduleauthor directives will be shown in the
|
||||
# output. They are ignored by default.
|
||||
#show_authors = False
|
||||
# show_authors = False
|
||||
|
||||
# The name of the Pygments (syntax highlighting) style to use.
|
||||
pygments_style = 'sphinx'
|
||||
|
||||
# A list of ignored prefixes for module index sorting.
|
||||
#modindex_common_prefix = []
|
||||
# modindex_common_prefix = []
|
||||
|
||||
# If true, keep warnings as "system message" paragraphs in the built documents.
|
||||
#keep_warnings = False
|
||||
# keep_warnings = False
|
||||
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = False
|
||||
@@ -132,26 +132,26 @@ html_theme = 'sphinx_rtd_theme'
|
||||
# Theme options are theme-specific and customize the look and feel of a theme
|
||||
# further. For a list of options available for each theme, see the
|
||||
# documentation.
|
||||
#html_theme_options = {}
|
||||
# html_theme_options = {}
|
||||
|
||||
# Add any paths that contain custom themes here, relative to this directory.
|
||||
#html_theme_path = []
|
||||
# html_theme_path = []
|
||||
|
||||
# The name for this set of Sphinx documents. If None, it defaults to
|
||||
# "<project> v<release> documentation".
|
||||
html_title = 'gprMax User Guide'
|
||||
|
||||
# A shorter title for the navigation bar. Default is the same as html_title.
|
||||
#html_short_title = None
|
||||
# html_short_title = None
|
||||
|
||||
# The name of an image file (relative to this directory) to place at the top
|
||||
# of the sidebar.
|
||||
#html_logo = 'images/gprMax_FB_logo.png'
|
||||
# html_logo = 'images/gprMax_FB_logo.png'
|
||||
|
||||
# The name of an image file (within the static path) to use as favicon of the
|
||||
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
|
||||
# pixels large.
|
||||
#html_favicon = None
|
||||
# html_favicon = None
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
@@ -162,7 +162,7 @@ html_style = 'css/my_theme.css'
|
||||
# Add any extra paths that contain custom files (such as robots.txt or
|
||||
# .htaccess) here, relative to this directory. These files are copied
|
||||
# directly to the root of the documentation.
|
||||
#html_extra_path = []
|
||||
# html_extra_path = []
|
||||
|
||||
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
|
||||
# using the given strftime format.
|
||||
@@ -170,54 +170,54 @@ html_last_updated_fmt = '%b %d, %Y'
|
||||
|
||||
# If true, SmartyPants will be used to convert quotes and dashes to
|
||||
# typographically correct entities.
|
||||
#html_use_smartypants = True
|
||||
# html_use_smartypants = True
|
||||
|
||||
# Custom sidebar templates, maps document names to template names.
|
||||
#html_sidebars = {}
|
||||
# html_sidebars = {}
|
||||
|
||||
# Additional templates that should be rendered to pages, maps page names to
|
||||
# template names.
|
||||
#html_additional_pages = {}
|
||||
# html_additional_pages = {}
|
||||
|
||||
# If false, no module index is generated.
|
||||
#html_domain_indices = True
|
||||
# html_domain_indices = True
|
||||
|
||||
# If false, no index is generated.
|
||||
#html_use_index = True
|
||||
# html_use_index = True
|
||||
|
||||
# If true, the index is split into individual pages for each letter.
|
||||
#html_split_index = False
|
||||
# html_split_index = False
|
||||
|
||||
# If true, links to the reST sources are added to the pages.
|
||||
html_show_sourcelink = False
|
||||
|
||||
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
|
||||
#html_show_sphinx = True
|
||||
# html_show_sphinx = True
|
||||
|
||||
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
|
||||
#html_show_copyright = True
|
||||
# html_show_copyright = True
|
||||
|
||||
# If true, an OpenSearch description file will be output, and all pages will
|
||||
# contain a <link> tag referring to it. The value of this option must be the
|
||||
# base URL from which the finished HTML is served.
|
||||
#html_use_opensearch = ''
|
||||
# html_use_opensearch = ''
|
||||
|
||||
# This is the file name suffix for HTML files (e.g. ".xhtml").
|
||||
#html_file_suffix = None
|
||||
# html_file_suffix = None
|
||||
|
||||
# Language to be used for generating the HTML full-text search index.
|
||||
# Sphinx supports the following languages:
|
||||
# 'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja'
|
||||
# 'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr'
|
||||
#html_search_language = 'en'
|
||||
# html_search_language = 'en'
|
||||
|
||||
# A dictionary with options for the search language support, empty by default.
|
||||
# Now only 'ja' uses this config value
|
||||
#html_search_options = {'type': 'default'}
|
||||
# html_search_options = {'type': 'default'}
|
||||
|
||||
# The name of a javascript file (relative to the configuration directory) that
|
||||
# implements a search results scorer. If empty, the default will be used.
|
||||
#html_search_scorer = 'scorer.js'
|
||||
# html_search_scorer = 'scorer.js'
|
||||
|
||||
# Output file base name for HTML help builder.
|
||||
htmlhelp_basename = 'gprMaxdoc'
|
||||
@@ -229,13 +229,13 @@ latex_elements = {
|
||||
'papersize': 'a4paper',
|
||||
|
||||
# The font size ('10pt', '11pt' or '12pt').
|
||||
#'pointsize': '10pt',
|
||||
# 'pointsize': '10pt',
|
||||
|
||||
# Additional stuff for the LaTeX preamble.
|
||||
#'preamble': '',
|
||||
# 'preamble': '',
|
||||
|
||||
# Latex figure (float) alignment
|
||||
#'figure_align': 'htbp',
|
||||
# 'figure_align': 'htbp',
|
||||
}
|
||||
|
||||
# Grouping the document tree into LaTeX files. List of tuples
|
||||
@@ -252,19 +252,19 @@ latex_logo = 'images/gprMax_logo.png'
|
||||
|
||||
# For "manual" documents, if this is true, then toplevel headings are parts,
|
||||
# not chapters.
|
||||
#latex_use_parts = False
|
||||
# latex_use_parts = False
|
||||
|
||||
# If true, show page references after internal links.
|
||||
#latex_show_pagerefs = False
|
||||
# latex_show_pagerefs = False
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
latex_show_urls = 'inline'
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#latex_appendices = []
|
||||
# latex_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#latex_domain_indices = True
|
||||
# latex_domain_indices = True
|
||||
|
||||
|
||||
# -- Options for manual page output ---------------------------------------
|
||||
@@ -277,7 +277,7 @@ man_pages = [
|
||||
]
|
||||
|
||||
# If true, show URL addresses after external links.
|
||||
#man_show_urls = False
|
||||
# man_show_urls = False
|
||||
|
||||
|
||||
# -- Options for Texinfo output -------------------------------------------
|
||||
@@ -292,16 +292,16 @@ texinfo_documents = [
|
||||
]
|
||||
|
||||
# Documents to append as an appendix to all manuals.
|
||||
#texinfo_appendices = []
|
||||
# texinfo_appendices = []
|
||||
|
||||
# If false, no module index is generated.
|
||||
#texinfo_domain_indices = True
|
||||
# texinfo_domain_indices = True
|
||||
|
||||
# How to display URL addresses: 'footnote', 'no', or 'inline'.
|
||||
#texinfo_show_urls = 'footnote'
|
||||
# texinfo_show_urls = 'footnote'
|
||||
|
||||
# If true, do not generate a @detailmenu in the "Top" node's menu.
|
||||
#texinfo_no_detailmenu = False
|
||||
# texinfo_no_detailmenu = False
|
||||
|
||||
|
||||
# -- Options for Epub output ----------------------------------------------
|
||||
@@ -319,11 +319,11 @@ epub_basename = 'gprMax User Guide'
|
||||
# for small screen space, using the same theme for HTML and epub output is
|
||||
# usually not wise. This defaults to 'epub', a theme designed to save visual
|
||||
# space.
|
||||
#epub_theme = 'epub'
|
||||
# epub_theme = 'epub'
|
||||
|
||||
# The language of the text. It defaults to the language option
|
||||
# or 'en' if the language is not set.
|
||||
#epub_language = ''
|
||||
# epub_language = ''
|
||||
|
||||
# The scheme of the identifier. Typical schemes are ISBN or URL.
|
||||
epub_scheme = 'URL'
|
||||
@@ -333,42 +333,42 @@ epub_scheme = 'URL'
|
||||
epub_identifier = 'www.gprmax.com'
|
||||
|
||||
# A unique identification for the text.
|
||||
#epub_uid = ''
|
||||
# epub_uid = ''
|
||||
|
||||
# A tuple containing the cover image and cover page html template filenames.
|
||||
#epub_cover = ()
|
||||
# epub_cover = ()
|
||||
|
||||
# A sequence of (type, uri, title) tuples for the guide element of content.opf.
|
||||
#epub_guide = ()
|
||||
# epub_guide = ()
|
||||
|
||||
# HTML files that should be inserted before the pages created by sphinx.
|
||||
# The format is a list of tuples containing the path and title.
|
||||
#epub_pre_files = []
|
||||
# epub_pre_files = []
|
||||
|
||||
# HTML files shat should be inserted after the pages created by sphinx.
|
||||
# The format is a list of tuples containing the path and title.
|
||||
#epub_post_files = []
|
||||
# epub_post_files = []
|
||||
|
||||
# A list of files that should not be packed into the epub file.
|
||||
epub_exclude_files = ['search.html']
|
||||
|
||||
# The depth of the table of contents in toc.ncx.
|
||||
#epub_tocdepth = 3
|
||||
# epub_tocdepth = 3
|
||||
|
||||
# Allow duplicate toc entries.
|
||||
#epub_tocdup = True
|
||||
# epub_tocdup = True
|
||||
|
||||
# Choose between 'default' and 'includehidden'.
|
||||
#epub_tocscope = 'default'
|
||||
# epub_tocscope = 'default'
|
||||
|
||||
# Fix unsupported image types using the Pillow.
|
||||
#epub_fix_images = False
|
||||
# epub_fix_images = False
|
||||
|
||||
# Scale large images.
|
||||
#epub_max_image_width = 0
|
||||
# epub_max_image_width = 0
|
||||
|
||||
# How to display URL addresses: 'footnote', 'no', or 'inline'.
|
||||
#epub_show_urls = 'inline'
|
||||
# epub_show_urls = 'inline'
|
||||
|
||||
# If false, no index is generated.
|
||||
#epub_use_index = True
|
||||
# epub_use_index = True
|
||||
|
@@ -67,10 +67,10 @@ if args.otherresults is not None:
|
||||
for i, result in enumerate(otherresults):
|
||||
ax.plot(result['threads'], result['benchtimes'], color=colors[1], marker='.', ms=10, lw=2, ls=lines[i], label=otherplotlabels[i] + ' (v' + version + ')')
|
||||
|
||||
#ax.plot(results['threads'], results['bench1'], color=colors[1], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v3.0.0b21)')
|
||||
#ax.plot(results['threads'], results['bench1c'], color=colors[0], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v2)')
|
||||
#ax.plot(results['threads'], results['bench2'], color=colors[1], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v3.0.0b21)')
|
||||
#ax.plot(results['threads'], results['bench2c'], color=colors[0], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v2)')
|
||||
# ax.plot(results['threads'], results['bench1'], color=colors[1], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v3.0.0b21)')
|
||||
# ax.plot(results['threads'], results['bench1c'], color=colors[0], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v2)')
|
||||
# ax.plot(results['threads'], results['bench2'], color=colors[1], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v3.0.0b21)')
|
||||
# ax.plot(results['threads'], results['bench2c'], color=colors[0], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v2)')
|
||||
|
||||
ax.set_xlabel('Number of threads')
|
||||
ax.set_ylabel('Time [s]')
|
||||
@@ -91,10 +91,10 @@ if args.otherresults is not None:
|
||||
for i, result in enumerate(otherresults):
|
||||
ax.plot(result['threads'], result['benchtimes'][-1] / result['benchtimes'], color=colors[1], marker='.', ms=10, lw=2, ls=lines[i], label=otherplotlabels[i] + ' (v' + version + ')')
|
||||
|
||||
#ax.plot(results['threads'], results['bench1'][0] / results['bench1'], color=colors[1], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v3.0.0b21)')
|
||||
#ax.plot(results['threads'], results['bench1c'][1] / results['bench1c'], color=colors[0], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v2)')
|
||||
#ax.plot(results['threads'], results['bench2'][0] / results['bench2'], color=colors[1], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v3.0.0b21)')
|
||||
#ax.plot(results['threads'], results['bench2c'][1] / results['bench2c'], color=colors[0], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v2)')
|
||||
# ax.plot(results['threads'], results['bench1'][0] / results['bench1'], color=colors[1], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v3.0.0b21)')
|
||||
# ax.plot(results['threads'], results['bench1c'][1] / results['bench1c'], color=colors[0], marker='.', ms=10, lw=2, label='bench_100x100x100.in (v2)')
|
||||
# ax.plot(results['threads'], results['bench2'][0] / results['bench2'], color=colors[1], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v3.0.0b21)')
|
||||
# ax.plot(results['threads'], results['bench2c'][1] / results['bench2c'], color=colors[0], marker='.', ms=10, lw=2, ls='--', label='bench_150x150x150.in (v2)')
|
||||
|
||||
ax.set_xlabel('Number of threads')
|
||||
ax.set_ylabel('Speed-up factor')
|
||||
|
@@ -84,7 +84,7 @@ ax.grid()
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
savename = os.path.abspath(os.path.dirname(args.modelfile)) + os.sep + os.path.splitext(os.path.split(args.modelfile)[1])[0] + '_vs_' + os.path.splitext(os.path.split(args.realfile)[1])[0]
|
||||
#fig.savefig(savename + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(savename + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig((savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
plt.show()
|
||||
|
@@ -47,11 +47,6 @@ class My_input_cmd_funcs_test(unittest.TestCase):
|
||||
rx(2, 1, 0, 'id', ['Ex', 'Ez'])
|
||||
self.assert_output(out, '#rx: 2 1 0 id Ex Ez')
|
||||
|
||||
def test_rx4(self):
|
||||
with captured_output() as (out, err):
|
||||
rx(2, 1, 0, 'id', ['Ex', 'Ez'])
|
||||
self.assert_output(out, '#rx: 2 1 0 id Ex Ez')
|
||||
|
||||
def test_rx_rotate_exception(self):
|
||||
with self.assertRaises(ValueError):
|
||||
rx(2, 1, 0, 'id', ['Ex', 'Ez'], polarisation='x', rotate90origin=(1, 1)) # no dxdy given
|
||||
|
@@ -41,17 +41,17 @@ from tests.analytical_solutions import hertzian_dipole_fs
|
||||
|
||||
basepath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models_')
|
||||
basepath += 'basic'
|
||||
#basepath += 'advanced'
|
||||
# basepath += 'advanced'
|
||||
|
||||
# List of available basic test models
|
||||
testmodels = ['hertzian_dipole_fs_analytical', '2D_ExHyHz', '2D_EyHxHz', '2D_EzHxHy', 'cylinder_Ascan_2D', 'hertzian_dipole_fs', 'hertzian_dipole_hs', 'hertzian_dipole_dispersive', 'magnetic_dipole_fs']
|
||||
|
||||
# List of available advanced test models
|
||||
#testmodels = ['antenna_GSSI_1500_fs', 'antenna_MALA_1200_fs']
|
||||
# testmodels = ['antenna_GSSI_1500_fs', 'antenna_MALA_1200_fs']
|
||||
|
||||
# Select a specific model if desired
|
||||
#testmodels = [testmodels[0], testmodels[5], testmodels[7]]
|
||||
#testmodels = [testmodels[5]]
|
||||
# testmodels = [testmodels[0], testmodels[5], testmodels[7]]
|
||||
# testmodels = [testmodels[5]]
|
||||
testresults = dict.fromkeys(testmodels)
|
||||
path = '/rxs/rx1/'
|
||||
|
||||
@@ -138,9 +138,9 @@ for i, model in enumerate(testmodels):
|
||||
datadiffs = np.zeros(datatest.shape, dtype=np.float64)
|
||||
for i in range(len(outputstest)):
|
||||
max = np.amax(np.abs(dataref[:, i]))
|
||||
datadiffs[:, i] = np.divide(np.abs(dataref[:, i] - datatest[:, i]), max, out=np.zeros_like(dataref[:, i]), where=max!=0) # Replace any division by zero with zero
|
||||
datadiffs[:, i] = np.divide(np.abs(dataref[:, i] - datatest[:, i]), max, out=np.zeros_like(dataref[:, i]), where=max != 0) # Replace any division by zero with zero
|
||||
with np.errstate(divide='ignore'):
|
||||
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i]) # Ignore any zero division in log10
|
||||
datadiffs[:, i] = 20 * np.log10(datadiffs[:, i]) # Ignore any zero division in log10
|
||||
|
||||
# Store max difference
|
||||
maxdiff = np.amax(np.amax(datadiffs))
|
||||
@@ -184,8 +184,8 @@ for i, model in enumerate(testmodels):
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
savename = os.path.join(basepath, model + os.path.sep + model)
|
||||
#fig1.savefig(savename + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig2.savefig(savename + '_diffs.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig1.savefig(savename + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig2.savefig(savename + '_diffs.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
fig1.savefig(savename + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
fig2.savefig(savename + '_diffs.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
|
@@ -111,7 +111,8 @@ if rxs:
|
||||
thresholddisplay = Show(threshold, renderview)
|
||||
thresholddisplay.ColorArrayName = 'Receivers'
|
||||
|
||||
#renderview.CameraParallelProjection = 1
|
||||
# renderview.CameraParallelProjection = 1
|
||||
RenderAllViews()
|
||||
|
||||
# Show color bar/color legend
|
||||
#thresholdDisplay.SetScalarBarVisibility(renderview, False)
|
||||
# thresholdDisplay.SetScalarBarVisibility(renderview, False)
|
||||
|
@@ -93,7 +93,7 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
||||
# Set plotting range to -60dB from maximum power
|
||||
pltrange = np.where((np.amax(power[1::]) - power[1::]) > 60)[0][0] + 1
|
||||
# To a maximum frequency
|
||||
#pltrange = np.where(freqs > 2e9)[0][0]
|
||||
# pltrange = np.where(freqs > 2e9)[0][0]
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
# Plot time history of output component
|
||||
@@ -135,7 +135,7 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]', ylabel=outputtext + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
#ax.set_ylim([-15, 20])
|
||||
# ax.set_ylim([-15, 20])
|
||||
ax.grid()
|
||||
|
||||
if 'H' in output:
|
||||
@@ -152,7 +152,7 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
||||
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
||||
else:
|
||||
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
||||
|
||||
|
||||
for output in outputs:
|
||||
# Check for polarity of output and if requested output is in file
|
||||
if output[-1] == 'm':
|
||||
@@ -173,51 +173,51 @@ def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
||||
ax = plt.subplot(gs[0, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
#ax.set_ylim([-15, 20])
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ey':
|
||||
ax = plt.subplot(gs[1, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
#ax.set_ylim([-15, 20])
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Ez':
|
||||
ax = plt.subplot(gs[2, 0])
|
||||
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
||||
#ax.set_ylim([-15, 20])
|
||||
# ax.set_ylim([-15, 20])
|
||||
elif output == 'Hx':
|
||||
ax = plt.subplot(gs[0, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
#ax.set_ylim([-0.03, 0.03])
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hy':
|
||||
ax = plt.subplot(gs[1, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
#ax.set_ylim([-0.03, 0.03])
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Hz':
|
||||
ax = plt.subplot(gs[2, 1])
|
||||
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
||||
#ax.set_ylim([-0.03, 0.03])
|
||||
# ax.set_ylim([-0.03, 0.03])
|
||||
elif output == 'Ix':
|
||||
ax = plt.subplot(gs[0, 2])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=outputtext)
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iy':
|
||||
ax = plt.subplot(gs[1, 2])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=outputtext)
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
elif output == 'Iz':
|
||||
ax = plt.subplot(gs[2, 2])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=outputtext)
|
||||
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
||||
ax.set_ylabel(outputtext + ', current [A]')
|
||||
for ax in fig.axes:
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
@@ -93,8 +93,8 @@ def mpl_plot(outputdata, dt, rxnumber, rxcomponent):
|
||||
cb.set_label('Current [A]')
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
#fig.savefig('Bscan' + str(rxnumber) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig.savefig('Bscan' + str(rxnumber) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig('Bscan' + str(rxnumber) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig('Bscan' + str(rxnumber) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
@@ -155,7 +155,7 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref,
|
||||
# To a certain drop from maximum power
|
||||
pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1
|
||||
# To a maximum frequency
|
||||
#pltrangemax = np.where(freqs > 6e9)[0][0]
|
||||
# pltrangemax = np.where(freqs > 6e9)[0][0]
|
||||
pltrange = np.s_[pltrangemin:pltrangemax]
|
||||
|
||||
# Print some useful values from s11, and input impedance
|
||||
@@ -163,8 +163,8 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref,
|
||||
print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin]))
|
||||
print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin]))
|
||||
print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag))
|
||||
#print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin])))
|
||||
#print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True)))
|
||||
# print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin])))
|
||||
# print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True)))
|
||||
|
||||
# Figure 1
|
||||
# Plot incident voltage
|
||||
@@ -254,45 +254,45 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref,
|
||||
ax.grid()
|
||||
|
||||
# Plot reflected (reflected) voltage
|
||||
#ax = plt.subplot(gs1[4, 0])
|
||||
#ax.plot(time, Vref, 'r', lw=2, label='Vref')
|
||||
#ax.set_title('Reflected voltage')
|
||||
#ax.set_xlabel('Time [s]')
|
||||
#ax.set_ylabel('Voltage [V]')
|
||||
#ax.set_xlim([0, np.amax(time)])
|
||||
# ax = plt.subplot(gs1[4, 0])
|
||||
# ax.plot(time, Vref, 'r', lw=2, label='Vref')
|
||||
# ax.set_title('Reflected voltage')
|
||||
# ax.set_xlabel('Time [s]')
|
||||
# ax.set_ylabel('Voltage [V]')
|
||||
# ax.set_xlim([0, np.amax(time)])
|
||||
# ax.grid()
|
||||
#
|
||||
|
||||
# Plot frequency spectra of reflected voltage
|
||||
#ax = plt.subplot(gs1[4, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'r')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
#ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
|
||||
#ax.set_title('Reflected voltage')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Power [dB]')
|
||||
# ax = plt.subplot(gs1[4, 1])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.')
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'r')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
# ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
|
||||
# ax.set_title('Reflected voltage')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Power [dB]')
|
||||
# ax.grid()
|
||||
#
|
||||
|
||||
# Plot reflected (reflected) current
|
||||
#ax = plt.subplot(gs1[5, 0])
|
||||
#ax.plot(time, Iref, 'b', lw=2, label='Iref')
|
||||
#ax.set_title('Reflected current')
|
||||
#ax.set_xlabel('Time [s]')
|
||||
#ax.set_ylabel('Current [A]')
|
||||
#ax.set_xlim([0, np.amax(time)])
|
||||
# ax = plt.subplot(gs1[5, 0])
|
||||
# ax.plot(time, Iref, 'b', lw=2, label='Iref')
|
||||
# ax.set_title('Reflected current')
|
||||
# ax.set_xlabel('Time [s]')
|
||||
# ax.set_ylabel('Current [A]')
|
||||
# ax.set_xlim([0, np.amax(time)])
|
||||
# ax.grid()
|
||||
#
|
||||
|
||||
# Plot frequency spectra of reflected current
|
||||
#ax = plt.subplot(gs1[5, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'b')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
#ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
|
||||
#ax.set_title('Reflected current')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Power [dB]')
|
||||
# ax = plt.subplot(gs1[5, 1])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.')
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'b')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
# ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
|
||||
# ax.set_title('Reflected current')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Power [dB]')
|
||||
# ax.grid()
|
||||
|
||||
# Figure 2
|
||||
@@ -308,8 +308,8 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref,
|
||||
ax.set_title('s11')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
#ax.set_xlim([0, 5e9])
|
||||
#ax.set_ylim([-25, 0])
|
||||
# ax.set_xlim([0, 5e9])
|
||||
# ax.set_ylim([-25, 0])
|
||||
ax.grid()
|
||||
|
||||
# Plot frequency spectra of s21
|
||||
@@ -323,8 +323,8 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref,
|
||||
ax.set_title('s21')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
#ax.set_ylim([-25, 50])
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-25, 50])
|
||||
ax.grid()
|
||||
|
||||
# Plot input resistance (real part of impedance)
|
||||
@@ -337,9 +337,9 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref,
|
||||
ax.set_title('Input impedance (resistive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Resistance [Ohms]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim(bottom=0)
|
||||
#ax.set_ylim([0, 300])
|
||||
# ax.set_ylim([0, 300])
|
||||
ax.grid()
|
||||
|
||||
# Plot input reactance (imaginery part of impedance)
|
||||
@@ -352,43 +352,43 @@ def mpl_plot(filename, time, freqs, Vinc, Vincp, Iinc, Iincp, Vref, Vrefp, Iref,
|
||||
ax.set_title('Input impedance (reactive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Reactance [Ohms]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
#ax.set_ylim([-300, 300])
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-300, 300])
|
||||
ax.grid()
|
||||
|
||||
# Plot input admittance (magnitude)
|
||||
#ax = plt.subplot(gs2[2, 0])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'g')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
#ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
|
||||
#ax.set_title('Input admittance (magnitude)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Admittance [Siemens]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
##ax.set_ylim([0, 0.035])
|
||||
# ax = plt.subplot(gs2[2, 0])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.')
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'g')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
# ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
|
||||
# ax.set_title('Input admittance (magnitude)')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Admittance [Siemens]')
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([0, 0.035])
|
||||
# ax.grid()
|
||||
#
|
||||
|
||||
# Plot input admittance (phase)
|
||||
#ax = plt.subplot(gs2[2, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'g')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
#ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
|
||||
#ax.set_title('Input admittance (phase)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Phase [degrees]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
##ax.set_ylim([-40, 100])
|
||||
# ax = plt.subplot(gs2[2, 1])
|
||||
# markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.')
|
||||
# plt.setp(baseline, 'linewidth', 0)
|
||||
# plt.setp(stemlines, 'color', 'g')
|
||||
# plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
# ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
|
||||
# ax.set_title('Input admittance (phase)')
|
||||
# ax.set_xlabel('Frequency [Hz]')
|
||||
# ax.set_ylabel('Phase [degrees]')
|
||||
# ax.set_xlim([0.88e9, 1.02e9])
|
||||
# ax.set_ylim([-40, 100])
|
||||
# ax.grid()
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
#fig1.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig2.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig1.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig2.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig1.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig2.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig1.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig2.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
@@ -156,8 +156,8 @@ def mpl_plot(w, timewindow, dt, iterations, fft=False):
|
||||
[ax.grid() for ax in fig.axes] # Turn on grid
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
#fig.savefig(os.path.dirname(os.path.abspath(__file__)) + os.sep + w.type + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig.savefig(os.path.dirname(os.path.abspath(__file__)) + os.sep + w.type + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(os.path.dirname(os.path.abspath(__file__)) + os.sep + w.type + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
# fig.savefig(os.path.dirname(os.path.abspath(__file__)) + os.sep + w.type + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
return plt
|
||||
|
||||
|
@@ -25,7 +25,7 @@ outputfile = args.outputfile
|
||||
########################################
|
||||
# User configurable parameters
|
||||
|
||||
# Pattern type (E or H)
|
||||
# Pattern type (E or H)
|
||||
type = 'H'
|
||||
|
||||
# Antenna (true if using full antenna model; false for a theoretical Hertzian dipole
|
||||
@@ -116,21 +116,21 @@ for rx in range(0, nrx):
|
||||
f.close()
|
||||
|
||||
# Plot traces for sanity checking
|
||||
#fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(num=outputfile, nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
#ax1.plot(time, Ex[:, traceno],'r', lw=2)
|
||||
#ax1.set_ylabel('$E_x$, field strength [V/m]')
|
||||
#ax3.plot(time, Ey[:, traceno],'r', lw=2)
|
||||
#ax3.set_ylabel('$E_y$, field strength [V/m]')
|
||||
#ax5.plot(time, Ez[:, traceno],'r', lw=2)
|
||||
#ax5.set_ylabel('$E_z$, field strength [V/m]')
|
||||
#ax2.plot(time, Hx[:, traceno],'b', lw=2)
|
||||
#ax2.set_ylabel('$H_x$, field strength [A/m]')
|
||||
#ax4.plot(time, Hy[:, traceno],'b', lw=2)
|
||||
#ax4.set_ylabel('$H_y$, field strength [A/m]')
|
||||
#ax6.plot(time, Hz[:, traceno],'b', lw=2)
|
||||
#ax6.set_ylabel('$H_z$, field strength [A/m]')
|
||||
# fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(num=outputfile, nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
# ax1.plot(time, Ex[:, traceno],'r', lw=2)
|
||||
# ax1.set_ylabel('$E_x$, field strength [V/m]')
|
||||
# ax3.plot(time, Ey[:, traceno],'r', lw=2)
|
||||
# ax3.set_ylabel('$E_y$, field strength [V/m]')
|
||||
# ax5.plot(time, Ez[:, traceno],'r', lw=2)
|
||||
# ax5.set_ylabel('$E_z$, field strength [V/m]')
|
||||
# ax2.plot(time, Hx[:, traceno],'b', lw=2)
|
||||
# ax2.set_ylabel('$H_x$, field strength [A/m]')
|
||||
# ax4.plot(time, Hy[:, traceno],'b', lw=2)
|
||||
# ax4.set_ylabel('$H_y$, field strength [A/m]')
|
||||
# ax6.plot(time, Hz[:, traceno],'b', lw=2)
|
||||
# ax6.set_ylabel('$H_z$, field strength [A/m]')
|
||||
# Turn on grid
|
||||
#[ax.grid() for ax in fig.axes]
|
||||
# [ax.grid() for ax in fig.axes]
|
||||
# plt.show()
|
||||
|
||||
# Calculate fields for patterns
|
||||
|
@@ -18,15 +18,15 @@ from gprMax.constants import c, z0
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.', usage='cd gprMax; python -m user_libs.antenna_patterns.plot_fields numpyfile')
|
||||
parser.add_argument('numpyfile', help='name of numpy file including path')
|
||||
#parser.add_argument('hertzian', help='name of numpy file including path')
|
||||
# parser.add_argument('hertzian', help='name of numpy file including path')
|
||||
args = parser.parse_args()
|
||||
patterns = np.load(args.numpyfile)
|
||||
#hertzian = np.load(args.hertzian)
|
||||
# hertzian = np.load(args.hertzian)
|
||||
|
||||
########################################
|
||||
# User configurable parameters
|
||||
|
||||
# Pattern type (E or H)
|
||||
# Pattern type (E or H)
|
||||
type = 'H'
|
||||
|
||||
# Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous)
|
||||
@@ -87,11 +87,11 @@ for patt in range(0, len(radii)):
|
||||
|
||||
# Add Hertzian dipole plot
|
||||
# hertzplot1 = np.append(hertzian[0, :], hertzian[0, 0]) # Append start value to close circle
|
||||
#hertzplot1 = hertzplot1 / np.max(np.max(hertzian))
|
||||
#ax.plot(theta, 10 * np.log10(hertzplot1), label='Inf. dipole, 0.1m', color='black', ls='-.', lw=3)
|
||||
# hertzplot1 = hertzplot1 / np.max(np.max(hertzian))
|
||||
# ax.plot(theta, 10 * np.log10(hertzplot1), label='Inf. dipole, 0.1m', color='black', ls='-.', lw=3)
|
||||
# hertzplot2 = np.append(hertzian[-1, :], hertzian[-1, 0]) # Append start value to close circle
|
||||
#hertzplot2 = hertzplot2 / np.max(np.max(hertzian))
|
||||
#ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3)
|
||||
# hertzplot2 = hertzplot2 / np.max(np.max(hertzian))
|
||||
# ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3)
|
||||
|
||||
# Theta axis options
|
||||
ax.set_theta_zero_location('N')
|
||||
@@ -110,13 +110,13 @@ ax.set_yticklabels(yticks)
|
||||
ax.grid(True)
|
||||
handles, existlabels = ax.get_legend_handles_labels()
|
||||
leg = ax.legend([handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27, -0.12), frameon=False) # Plot just first and last legend entries
|
||||
#leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False)
|
||||
# leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False)
|
||||
[legobj.set_linewidth(2) for legobj in leg.legendHandles]
|
||||
|
||||
# Save a pdf of the plot
|
||||
savename = os.path.splitext(args.numpyfile)[0] + '.pdf'
|
||||
fig.savefig(savename, dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#savename = os.path.splitext(args.numpyfile)[0] + '.png'
|
||||
#fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
# savename = os.path.splitext(args.numpyfile)[0] + '.png'
|
||||
# fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
plt.show()
|
||||
|
@@ -52,13 +52,13 @@ def antenna_like_GSSI_1500(x, y, z, resolution=0.001, rotate90=False, **kwargs):
|
||||
else:
|
||||
# excitationfreq = 1.5e9 # GHz
|
||||
# sourceresistance = 50 # Ohms
|
||||
#absorberEr = 1.7
|
||||
#absorbersig = 0.59
|
||||
# absorberEr = 1.7
|
||||
# absorbersig = 0.59
|
||||
|
||||
# Values from http://hdl.handle.net/1842/4074
|
||||
excitationfreq = 1.71e9
|
||||
#sourceresistance = 4
|
||||
sourceresistance = 230 # Correction for old (< 123) GprMax3D bug
|
||||
# sourceresistance = 4
|
||||
sourceresistance = 230 # Correction for old (< 123) GprMax3D bug
|
||||
absorberEr = 1.58
|
||||
absorbersig = 0.428
|
||||
rxres = 925 # Resistance at Rx bowtie
|
||||
@@ -157,8 +157,8 @@ def antenna_like_GSSI_1500(x, y, z, resolution=0.001, rotate90=False, **kwargs):
|
||||
box(x, y, z, x + casesize[0], y + casesize[1], z + skidthickness, 'hdpe', rotate90origin=rotate90origin)
|
||||
|
||||
# Geometry views
|
||||
#geometry_view(x - dx, y - dy, z - dz, x + casesize[0] + dx, y + casesize[1] + dy, z + skidthickness + casesize[2] + dz, dx, dy, dz, 'antenna_like_GSSI_1500')
|
||||
#geometry_view(x, y, z, x + casesize[0], y + casesize[1], z + 0.010, dx, dy, dz, 'antenna_like_GSSI_1500_pcb', type='f')
|
||||
# geometry_view(x - dx, y - dy, z - dz, x + casesize[0] + dx, y + casesize[1] + dy, z + skidthickness + casesize[2] + dz, dx, dy, dz, 'antenna_like_GSSI_1500')
|
||||
# geometry_view(x, y, z, x + casesize[0], y + casesize[1], z + 0.010, dx, dy, dz, 'antenna_like_GSSI_1500_pcb', type='f')
|
||||
|
||||
# Excitation - custom pulse
|
||||
# print('#excitation_file: {}'.format(os.path.join(moduledirectory, 'GSSIgausspulse1.txt')))
|
||||
@@ -395,8 +395,8 @@ def antenna_like_MALA_1200(x, y, z, resolution=0.001, rotate90=False, **kwargs):
|
||||
box(x, y, z + polypropylenethickness, x + casesize[0], y + casesize[1], z + polypropylenethickness + hdpethickness, 'hdpe', rotate90origin=rotate90origin)
|
||||
|
||||
# Geometry views
|
||||
#geometry_view(x - dx, y - dy, z - dz, x + casesize[0] + dx, y + casesize[1] + dy, z + casesize[2] + skidthickness + dz, dx, dy, dz, 'antenna_like_MALA_1200')
|
||||
#geometry_view(x, y, z, x + casesize[0], y + casesize[1], z + 0.010, dx, dy, dz, 'antenna_like_MALA_1200_pcb', type='f')
|
||||
# geometry_view(x - dx, y - dy, z - dz, x + casesize[0] + dx, y + casesize[1] + dy, z + casesize[2] + skidthickness + dz, dx, dy, dz, 'antenna_like_MALA_1200')
|
||||
# geometry_view(x, y, z, x + casesize[0], y + casesize[1], z + 0.010, dx, dy, dz, 'antenna_like_MALA_1200_pcb', type='f')
|
||||
|
||||
# Excitation
|
||||
print('#waveform: gaussian 1.0 {} myGaussian'.format(excitationfreq))
|
||||
|
@@ -107,31 +107,31 @@ def xcorr(filename, args):
|
||||
raise GeneralError('No outputs matching {} were found'.format(args['outputs']))
|
||||
|
||||
# Normalise reference respose and response from output file
|
||||
# refresp /= np.amax(np.abs(refresp))
|
||||
# modelresp /= np.amax(np.abs(modelresp))
|
||||
# refresp /= np.amax(np.abs(refresp))
|
||||
# modelresp /= np.amax(np.abs(modelresp))
|
||||
|
||||
# Make both responses the same length in time
|
||||
# if reftime[-1] > modeltime[-1]:
|
||||
# reftime = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], reftime[-1] / len(reftime))
|
||||
# refresp = refresp[0:len(reftime)]
|
||||
# elif modeltime[-1] > reftime[-1]:
|
||||
# modeltime = np.arange(0, reftime[-1], f.attrs['dt'])
|
||||
# modelresp = modelresp[0:len(modeltime)]
|
||||
#
|
||||
# # Downsample the response with the higher sampling rate
|
||||
# if len(modeltime) < len(reftime):
|
||||
# refresp = signal.resample(refresp, len(modelresp))
|
||||
# elif len(reftime) < len(modeltime):
|
||||
# modelresp = signal.resample(modelresp, len(refresp))
|
||||
# if reftime[-1] > modeltime[-1]:
|
||||
# reftime = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], reftime[-1] / len(reftime))
|
||||
# refresp = refresp[0:len(reftime)]
|
||||
# elif modeltime[-1] > reftime[-1]:
|
||||
# modeltime = np.arange(0, reftime[-1], f.attrs['dt'])
|
||||
# modelresp = modelresp[0:len(modeltime)]
|
||||
|
||||
# Downsample the response with the higher sampling rate
|
||||
# if len(modeltime) < len(reftime):
|
||||
# refresp = signal.resample(refresp, len(modelresp))
|
||||
# elif len(reftime) < len(modeltime):
|
||||
# modelresp = signal.resample(modelresp, len(refresp))
|
||||
|
||||
# Prepare data for normalized cross-correlation
|
||||
refresp = (refresp - np.mean(refresp)) / (np.std(refresp) * len(refresp))
|
||||
modelresp = (modelresp - np.mean(modelresp)) / np.std(modelresp)
|
||||
|
||||
# Plots responses for checking
|
||||
#fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Voltage [V]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
#ax.plot(refresp,'r', lw=2, label='refresp')
|
||||
#ax.plot(modelresp,'b', lw=2, label='modelresp')
|
||||
# fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Voltage [V]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
# ax.plot(refresp,'r', lw=2, label='refresp')
|
||||
# ax.plot(modelresp,'b', lw=2, label='modelresp')
|
||||
# ax.grid()
|
||||
# plt.show()
|
||||
|
||||
@@ -142,10 +142,10 @@ def xcorr(filename, args):
|
||||
xcorr = np.nan_to_num(xcorr)
|
||||
|
||||
# Plot cross-correlation for checking
|
||||
# fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Voltage [V]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
# ax.plot(xcorr,'r', lw=2, label='xcorr')
|
||||
# ax.grid()
|
||||
# plt.show()
|
||||
# fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Voltage [V]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
# ax.plot(xcorr,'r', lw=2, label='xcorr')
|
||||
# ax.grid()
|
||||
# plt.show()
|
||||
|
||||
xcorrmax = np.amax(xcorr)
|
||||
|
||||
@@ -237,15 +237,15 @@ def compactness(filename, args):
|
||||
# Amplitude ratio of the 1st to 3rd peak - hopefully be a measure of a compact envelope
|
||||
compactness = np.abs(outputdata[peaks[0]]) / np.abs(outputdata[peaks[2]])
|
||||
|
||||
# # Percentage of maximum value to measure compactness of signal
|
||||
# durationthreshold = 2
|
||||
# # Check if there is a peak/trough smaller than threshold
|
||||
# durationthresholdexist = np.where(np.abs(outputdata[peaks]) < (peak * (durationthreshold / 100)))[0]
|
||||
# if durationthresholdexist.size == 0:
|
||||
# compactness = time[peaks[-1]]
|
||||
# else:
|
||||
# time2threshold = time[peaks[durationthresholdexist[0]]]
|
||||
# compactness = time2threshold - time[min(peaks)]
|
||||
# Percentage of maximum value to measure compactness of signal
|
||||
# durationthreshold = 2
|
||||
# Check if there is a peak/trough smaller than threshold
|
||||
# durationthresholdexist = np.where(np.abs(outputdata[peaks]) < (peak * (durationthreshold / 100)))[0]
|
||||
# if durationthresholdexist.size == 0:
|
||||
# compactness = time[peaks[-1]]
|
||||
# else:
|
||||
# time2threshold = time[peaks[durationthresholdexist[0]]]
|
||||
# compactness = time2threshold - time[min(peaks)]
|
||||
|
||||
# Check in case no outputs where found
|
||||
if not outputsused:
|
||||
|
在新工单中引用
屏蔽一个用户