你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-05 20:16:52 +08:00
236 行
11 KiB
Python
236 行
11 KiB
Python
# Copyright (C) 2015-2017: The University of Edinburgh
|
|
# Authors: Craig Warren and Antonis Giannopoulos
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
|
|
import h5py
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
|
|
from gprMax.exceptions import CmdInputError
|
|
from gprMax.receivers import Rx
|
|
|
|
|
|
def mpl_plot(filename, outputs=Rx.defaultoutputs, fft=False):
|
|
"""Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.
|
|
|
|
Args:
|
|
filename (string): Filename (including path) of output file.
|
|
outputs (list): List of field/current components to plot.
|
|
fft (boolean): Plot FFT switch.
|
|
|
|
Returns:
|
|
plt (object): matplotlib plot object.
|
|
"""
|
|
|
|
# Open output file and read some attributes
|
|
f = h5py.File(filename, 'r')
|
|
nrx = f.attrs['nrx']
|
|
dt = f.attrs['dt']
|
|
iterations = f.attrs['Iterations']
|
|
time = np.linspace(0, 1, iterations)
|
|
time *= (iterations * dt)
|
|
|
|
# Check there are any receivers
|
|
if nrx == 0:
|
|
raise CmdInputError('No receivers found in {}'.format(filename))
|
|
|
|
# Check for single output component when doing a FFT
|
|
if fft:
|
|
if not len(outputs) == 1:
|
|
raise CmdInputError('A single output must be specified when using the -fft option')
|
|
|
|
# New plot for each receiver
|
|
for rx in range(1, nrx + 1):
|
|
path = '/rxs/rx' + str(rx) + '/'
|
|
availableoutputs = list(f[path].keys())
|
|
|
|
# If only a single output is required, create one subplot
|
|
if len(outputs) == 1:
|
|
|
|
# Check for polarity of output and if requested output is in file
|
|
if outputs[0][-1] == '-':
|
|
polarity = -1
|
|
outputtext = '-' + outputs[0][0:-1]
|
|
output = outputs[0][0:-1]
|
|
else:
|
|
polarity = 1
|
|
outputtext = outputs[0]
|
|
output = outputs[0]
|
|
|
|
if output not in availableoutputs:
|
|
raise CmdInputError('{} output requested to plot, but the available output for receiver 1 is {}'.format(output, ', '.join(availableoutputs)))
|
|
|
|
outputdata = f[path + output][:] * polarity
|
|
|
|
# Plotting if FFT required
|
|
if fft:
|
|
# Calculate magnitude of frequency spectra of waveform
|
|
power = 10 * np.log10(np.abs(np.fft.fft(outputdata))**2)
|
|
freqs = np.fft.fftfreq(power.size, d=dt)
|
|
|
|
# Shift powers so that frequency with maximum power is at zero decibels
|
|
power -= np.amax(power)
|
|
|
|
# Set plotting range to -60dB from maximum power
|
|
pltrange = np.where((np.amax(power[1::]) - power[1::]) > 60)[0][0] + 1
|
|
# To a maximum frequency
|
|
# pltrange = np.where(freqs > 2e9)[0][0]
|
|
pltrange = np.s_[0:pltrange]
|
|
|
|
# Plot time history of output component
|
|
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
ax1.set_xlabel('Time [s]')
|
|
ax1.set_ylabel(outputtext + ' field strength [V/m]')
|
|
ax1.set_xlim([0, np.amax(time)])
|
|
ax1.grid()
|
|
|
|
# Plot frequency spectra
|
|
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange], '-.')
|
|
plt.setp(baseline, 'linewidth', 0)
|
|
plt.setp(stemlines, 'color', 'r')
|
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
line2 = ax2.plot(freqs[pltrange], power[pltrange], 'r', lw=2)
|
|
ax2.set_xlabel('Frequency [Hz]')
|
|
ax2.set_ylabel('Power [dB]')
|
|
ax2.grid()
|
|
|
|
# Change colours and labels for magnetic field components or currents
|
|
if 'H' in outputs[0]:
|
|
plt.setp(line1, color='g')
|
|
plt.setp(line2, color='g')
|
|
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
|
|
plt.setp(stemlines, 'color', 'g')
|
|
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
|
elif 'I' in outputs[0]:
|
|
plt.setp(line1, color='b')
|
|
plt.setp(line2, color='b')
|
|
plt.setp(ax1, ylabel=outputtext + ' current [A]')
|
|
plt.setp(stemlines, 'color', 'b')
|
|
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
|
|
|
plt.show()
|
|
|
|
# Plotting if no FFT required
|
|
else:
|
|
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]', ylabel=outputtext + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
line = ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
ax.set_xlim([0, np.amax(time)])
|
|
# ax.set_ylim([-15, 20])
|
|
ax.grid()
|
|
|
|
if 'H' in output:
|
|
plt.setp(line, color='g')
|
|
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
|
|
elif 'I' in output:
|
|
plt.setp(line, color='b')
|
|
plt.setp(ax, ylabel=outputtext + ', current [A]')
|
|
|
|
# If multiple outputs required, create all nine subplots and populate only the specified ones
|
|
else:
|
|
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
if len(outputs) == 9:
|
|
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
|
|
else:
|
|
gs = gridspec.GridSpec(3, 2, hspace=0.3, wspace=0.3)
|
|
|
|
for output in outputs:
|
|
# Check for polarity of output and if requested output is in file
|
|
if output[-1] == 'm':
|
|
polarity = -1
|
|
outputtext = '-' + output[0:-1]
|
|
output = output[0:-1]
|
|
else:
|
|
polarity = 1
|
|
outputtext = output
|
|
|
|
# Check if requested output is in file
|
|
if output not in availableoutputs:
|
|
raise CmdInputError('Output(s) requested to plot: {}, but available output(s) for receiver {} in the file: {}'.format(', '.join(outputs), rx, ', '.join(availableoutputs)))
|
|
|
|
outputdata = f[path + output][:] * polarity
|
|
|
|
if output == 'Ex':
|
|
ax = plt.subplot(gs[0, 0])
|
|
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
|
# ax.set_ylim([-15, 20])
|
|
elif output == 'Ey':
|
|
ax = plt.subplot(gs[1, 0])
|
|
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
|
# ax.set_ylim([-15, 20])
|
|
elif output == 'Ez':
|
|
ax = plt.subplot(gs[2, 0])
|
|
ax.plot(time, outputdata, 'r', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', field strength [V/m]')
|
|
# ax.set_ylim([-15, 20])
|
|
elif output == 'Hx':
|
|
ax = plt.subplot(gs[0, 1])
|
|
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
|
# ax.set_ylim([-0.03, 0.03])
|
|
elif output == 'Hy':
|
|
ax = plt.subplot(gs[1, 1])
|
|
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
|
# ax.set_ylim([-0.03, 0.03])
|
|
elif output == 'Hz':
|
|
ax = plt.subplot(gs[2, 1])
|
|
ax.plot(time, outputdata, 'g', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', field strength [A/m]')
|
|
# ax.set_ylim([-0.03, 0.03])
|
|
elif output == 'Ix':
|
|
ax = plt.subplot(gs[0, 2])
|
|
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', current [A]')
|
|
elif output == 'Iy':
|
|
ax = plt.subplot(gs[1, 2])
|
|
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', current [A]')
|
|
elif output == 'Iz':
|
|
ax = plt.subplot(gs[2, 2])
|
|
ax.plot(time, outputdata, 'b', lw=2, label=outputtext)
|
|
ax.set_ylabel(outputtext + ', current [A]')
|
|
for ax in fig.axes:
|
|
ax.set_xlim([0, np.amax(time)])
|
|
ax.grid()
|
|
|
|
# Save a PDF/PNG of the figure
|
|
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
|
# fig.savefig(os.path.splitext(os.path.abspath(filename))[0] + '_rx' + str(rx) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
|
|
|
return plt
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
|
parser.add_argument('outputfile', help='name of output file including path')
|
|
parser.add_argument('--outputs', help='outputs to be plotted', default=Rx.defaultoutputs, choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz', 'Ex-', 'Ey-', 'Ez-', 'Hx-', 'Hy-', 'Hz-', 'Ix-', 'Iy-', 'Iz-'], nargs='+')
|
|
parser.add_argument('-fft', action='store_true', help='plot FFT (single output must be specified)', default=False)
|
|
args = parser.parse_args()
|
|
|
|
plthandle = mpl_plot(args.outputfile, args.outputs, fft=args.fft)
|
|
plthandle.show()
|