你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
Updated to take optional command line arguments for receiver antenna to calculate s21 parameter.
这个提交包含在:
@@ -21,345 +21,339 @@ import h5py
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
#import scipy.io as sio
|
||||
|
||||
"""Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source."""
|
||||
from gprMax.exceptions import CmdInputError
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('-tln', default=1, type=int, help='transmission line number')
|
||||
args = parser.parse_args()
|
||||
|
||||
print("Antenna parameter analysis from file '{}'...".format(args.outputfile))
|
||||
def plot_antenna_params(filename, tln=1, rxn=None, rx=None):
|
||||
"""Calculates and plots antenna parameters - s11, (s21) and input impedance.
|
||||
|
||||
Args:
|
||||
filename (string): Filename (including path) of output file.
|
||||
tln (int): Transmitting antenna - transmission line number
|
||||
rxn (int): Receiver antenna - output number
|
||||
rx (str): Receiver antenna - output electric field component
|
||||
"""
|
||||
|
||||
# Open output file and read some attributes
|
||||
file = args.outputfile
|
||||
f = h5py.File(file, 'r')
|
||||
dt = f.attrs['dt']
|
||||
iterations = f.attrs['Iterations']
|
||||
# Open output file and read some attributes
|
||||
f = h5py.File(filename, 'r')
|
||||
dt = f.attrs['dt']
|
||||
iterations = f.attrs['Iterations']
|
||||
|
||||
# Choose a specific frequency bin spacing
|
||||
#df = 1.5e6
|
||||
#iterations = int((1 / df) / dt)
|
||||
# Calculate time array and frequency bin spacing
|
||||
time = np.linspace(0, 1, iterations)
|
||||
time *= (iterations * dt)
|
||||
df = 1 / np.amax(time)
|
||||
|
||||
# Calculate time array and frequency bin spacing
|
||||
time = np.linspace(0, 1, iterations)
|
||||
time *= (iterations * dt)
|
||||
df = 1 / np.amax(time)
|
||||
print('Time window: {:g} s ({} iterations)'.format(np.amax(time), iterations))
|
||||
print('Time step: {:g} s'.format(dt))
|
||||
print('Frequency bin spacing: {:g} Hz'.format(df))
|
||||
|
||||
print('Time window: {:g} s ({} iterations)'.format(np.amax(time), iterations))
|
||||
print('Time step: {:g} s'.format(dt))
|
||||
print('Frequency bin spacing: {:g} Hz'.format(df))
|
||||
# Read/calculate voltages and currents
|
||||
tlpath = '/tls/tl' + str(tln) + '/'
|
||||
|
||||
# Read/calculate voltages and currents
|
||||
path = '/tls/tl' + str(args.tln) + '/'
|
||||
Vinc = f[path + 'Vinc'][:]
|
||||
Iinc = f[path + 'Iinc'][:]
|
||||
Vtotal = f[path +'Vtotal'][:]
|
||||
Itotal = f[path +'Itotal'][:]
|
||||
Vrec = f['/rxs/rx1/Ex'][:] * -1
|
||||
f.close()
|
||||
Vref = Vtotal - Vinc
|
||||
Iref = Itotal - Iinc
|
||||
# Incident voltages/currents
|
||||
Vinc = f[tlpath + 'Vinc'][:]
|
||||
Iinc = f[tlpath + 'Iinc'][:]
|
||||
|
||||
# Frequency bins
|
||||
freqs = np.fft.fftfreq(Vinc.size, d=dt)
|
||||
# Total (incident + reflected) voltages/currents
|
||||
Vtotal = f[tlpath +'Vtotal'][:]
|
||||
Itotal = f[tlpath +'Itotal'][:]
|
||||
|
||||
# Delay correction - current lags voltage, so delay voltage to match current timestep
|
||||
delaycorrection = np.exp(-1j * 2 * np.pi * freqs * (dt / 2))
|
||||
# Reflected voltages/currents
|
||||
Vref = Vtotal - Vinc
|
||||
Iref = Itotal - Iinc
|
||||
|
||||
# Calculate s11
|
||||
s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection)
|
||||
s21 = np.abs(np.fft.fft(Vrec)) / np.abs(np.fft.fft(Vinc) * delaycorrection)
|
||||
# If a receiver number for a receiever antenna is given can get received voltage for s21
|
||||
if rxn:
|
||||
if rx not in ['Ex', 'Ey', 'Ez']:
|
||||
raise CmdInputError('The field component for the receiver antenna output must be Ex, Ey, or Ez')
|
||||
rxpath = '/rxs/rx' + str(rxn) + '/' + rx
|
||||
# Received voltage
|
||||
Vrec = f[rxpath][:] * -1
|
||||
f.close()
|
||||
|
||||
# Calculate input impedance
|
||||
zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal)
|
||||
# Frequency bins
|
||||
freqs = np.fft.fftfreq(Vinc.size, d=dt)
|
||||
|
||||
# Load MoM zin from MATLAB antenna toolbox
|
||||
#MoM = {}
|
||||
#sio.loadmat('/../tests/numerical/vs_MoM_MATLAB/antenna_bowtie_fs/antenna_bowtie_fs_MoM.mat', MoM)
|
||||
# Delay correction - current lags voltage, so delay voltage to match current timestep
|
||||
delaycorrection = np.exp(-1j * 2 * np.pi * freqs * (dt / 2))
|
||||
|
||||
# Calculate input admittance
|
||||
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
|
||||
# Calculate s11
|
||||
s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection)
|
||||
if rxn:
|
||||
s21 = np.abs(np.fft.fft(Vrec)) / np.abs(np.fft.fft(Vinc) * delaycorrection)
|
||||
|
||||
# Convert to decibels
|
||||
Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection)))
|
||||
Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc)))
|
||||
Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection)))
|
||||
Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref)))
|
||||
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
|
||||
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
|
||||
s11 = 20 * np.log10(s11)
|
||||
s21 = 20 * np.log10(s21)
|
||||
# Calculate input impedance
|
||||
zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal)
|
||||
|
||||
# Set plotting range
|
||||
pltrangemin = 1
|
||||
# To a certain drop from maximum power
|
||||
pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1
|
||||
# To a maximum frequency
|
||||
#pltrangemax = np.where(freqs > 6e9)[0][0]
|
||||
pltrange = np.s_[pltrangemin:pltrangemax]
|
||||
# Calculate input admittance
|
||||
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
|
||||
|
||||
# Print some useful values from s11, input impedance and admittance
|
||||
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
|
||||
print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin]))
|
||||
print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin]))
|
||||
print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag))
|
||||
print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin])))
|
||||
print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True)))
|
||||
# Convert to decibels
|
||||
Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection)))
|
||||
Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc)))
|
||||
Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection)))
|
||||
Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref)))
|
||||
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
|
||||
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
|
||||
s11 = 20 * np.log10(s11)
|
||||
if rxn:
|
||||
s21 = 20 * np.log10(s21)
|
||||
|
||||
# Figure 1
|
||||
# Plot incident voltage
|
||||
fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
|
||||
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
|
||||
ax = plt.subplot(gs1[0, 0])
|
||||
ax.plot(time, Vinc, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
# Set plotting range
|
||||
pltrangemin = 1
|
||||
# To a certain drop from maximum power
|
||||
pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1
|
||||
# To a maximum frequency
|
||||
#pltrangemax = np.where(freqs > 6e9)[0][0]
|
||||
pltrange = np.s_[pltrangemin:pltrangemax]
|
||||
|
||||
# Plot frequency spectra of incident voltage
|
||||
ax = plt.subplot(gs1[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
# Print some useful values from s11, and input impedance
|
||||
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
|
||||
print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin]))
|
||||
print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin]))
|
||||
print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag))
|
||||
#print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin])))
|
||||
#print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True)))
|
||||
|
||||
# Plot incident current
|
||||
ax = plt.subplot(gs1[1, 0])
|
||||
ax.plot(time, Iinc, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
# Figure 1
|
||||
# Plot incident voltage
|
||||
fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
|
||||
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
|
||||
ax = plt.subplot(gs1[0, 0])
|
||||
ax.plot(time, Vinc, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
# Plot frequency spectra of incident current
|
||||
ax = plt.subplot(gs1[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
# Plot frequency spectra of incident voltage
|
||||
ax = plt.subplot(gs1[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Incident voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
|
||||
# Plot total voltage
|
||||
ax = plt.subplot(gs1[2, 0])
|
||||
ax.plot(time, Vtotal, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
# Plot incident current
|
||||
ax = plt.subplot(gs1[1, 0])
|
||||
ax.plot(time, Iinc, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
# Plot frequency spectra of total voltage
|
||||
ax = plt.subplot(gs1[2, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
# Plot frequency spectra of incident current
|
||||
ax = plt.subplot(gs1[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Incident current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
|
||||
# Plot total current
|
||||
ax = plt.subplot(gs1[3, 0])
|
||||
ax.plot(time, Itotal, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
# Plot total voltage
|
||||
ax = plt.subplot(gs1[2, 0])
|
||||
ax.plot(time, Vtotal, 'r', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Voltage [V]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
# Plot frequency spectra of reflected current
|
||||
ax = plt.subplot(gs1[3, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
# Plot frequency spectra of total voltage
|
||||
ax = plt.subplot(gs1[2, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2)
|
||||
ax.set_title('Total (incident + reflected) voltage')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
|
||||
## Plot reflected (reflected) voltage
|
||||
#ax = plt.subplot(gs1[4, 0])
|
||||
#ax.plot(time, Vref, 'r', lw=2, label='Vref')
|
||||
#ax.set_title('Reflected voltage')
|
||||
#ax.set_xlabel('Time [s]')
|
||||
#ax.set_ylabel('Voltage [V]')
|
||||
#ax.set_xlim([0, np.amax(time)])
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot frequency spectra of reflected voltage
|
||||
#ax = plt.subplot(gs1[4, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'r')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
#ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
|
||||
#ax.set_title('Reflected voltage')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Power [dB]')
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot reflected (reflected) current
|
||||
#ax = plt.subplot(gs1[5, 0])
|
||||
#ax.plot(time, Iref, 'b', lw=2, label='Iref')
|
||||
#ax.set_title('Reflected current')
|
||||
#ax.set_xlabel('Time [s]')
|
||||
#ax.set_ylabel('Current [A]')
|
||||
#ax.set_xlim([0, np.amax(time)])
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot frequency spectra of reflected current
|
||||
#ax = plt.subplot(gs1[5, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'b')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
#ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
|
||||
#ax.set_title('Reflected current')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Power [dB]')
|
||||
#ax.grid()
|
||||
# Plot total current
|
||||
ax = plt.subplot(gs1[3, 0])
|
||||
ax.plot(time, Itotal, 'b', lw=2, label='Vinc')
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Time [s]')
|
||||
ax.set_ylabel('Current [A]')
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
# Figure 2
|
||||
# Plot frequency spectra of s11
|
||||
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
|
||||
gs2 = gridspec.GridSpec(2, 2, hspace=0.5)
|
||||
ax = plt.subplot(gs2[0, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2)
|
||||
ax.set_title('s11')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim([-20, 0])
|
||||
ax.grid()
|
||||
# Plot frequency spectra of reflected current
|
||||
ax = plt.subplot(gs1[3, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2)
|
||||
ax.set_title('Total (incident + reflected) current')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
ax.grid()
|
||||
|
||||
# Plot frequency spectra of s21
|
||||
ax = plt.subplot(gs2[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
|
||||
ax.set_title('s21')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim([-25, 50])
|
||||
ax.grid()
|
||||
## Plot reflected (reflected) voltage
|
||||
#ax = plt.subplot(gs1[4, 0])
|
||||
#ax.plot(time, Vref, 'r', lw=2, label='Vref')
|
||||
#ax.set_title('Reflected voltage')
|
||||
#ax.set_xlabel('Time [s]')
|
||||
#ax.set_ylabel('Voltage [V]')
|
||||
#ax.set_xlim([0, np.amax(time)])
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot frequency spectra of reflected voltage
|
||||
#ax = plt.subplot(gs1[4, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'r')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
#ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
|
||||
#ax.set_title('Reflected voltage')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Power [dB]')
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot reflected (reflected) current
|
||||
#ax = plt.subplot(gs1[5, 0])
|
||||
#ax.plot(time, Iref, 'b', lw=2, label='Iref')
|
||||
#ax.set_title('Reflected current')
|
||||
#ax.set_xlabel('Time [s]')
|
||||
#ax.set_ylabel('Current [A]')
|
||||
#ax.set_xlim([0, np.amax(time)])
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot frequency spectra of reflected current
|
||||
#ax = plt.subplot(gs1[5, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'b')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
#ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
|
||||
#ax.set_title('Reflected current')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Power [dB]')
|
||||
#ax.grid()
|
||||
|
||||
# Plot input resistance (real part of impedance)
|
||||
ax = plt.subplot(gs2[1, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2)
|
||||
ax.set_title('Input impedance (resistive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Resistance [Ohms]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim(bottom=0)
|
||||
ax.set_ylim([0, 300])
|
||||
ax.grid()
|
||||
# Figure 2
|
||||
# Plot frequency spectra of s11
|
||||
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
|
||||
gs2 = gridspec.GridSpec(2, 2, hspace=0.5)
|
||||
ax = plt.subplot(gs2[0, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2)
|
||||
ax.set_title('s11')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
#ax.set_ylim([-20, 0])
|
||||
ax.grid()
|
||||
|
||||
# Plot input reactance (imaginery part of impedance)
|
||||
ax = plt.subplot(gs2[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2)
|
||||
ax.set_title('Input impedance (reactive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Reactance [Ohms]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim([-200, 100])
|
||||
ax.grid()
|
||||
# Plot frequency spectra of s21
|
||||
if rxn:
|
||||
ax = plt.subplot(gs2[0, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
|
||||
ax.set_title('s21')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Power [dB]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
#ax.set_ylim([-25, 50])
|
||||
ax.grid()
|
||||
|
||||
## Plot input admittance (magnitude)
|
||||
#ax = plt.subplot(gs2[2, 0])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'g')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
#ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
|
||||
#ax.set_title('Input admittance (magnitude)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Admittance [Siemens]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
##ax.set_ylim([0, 0.035])
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot input admittance (phase)
|
||||
#ax = plt.subplot(gs2[2, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'g')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
#ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
|
||||
#ax.set_title('Input admittance (phase)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Phase [degrees]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
##ax.set_ylim([-40, 100])
|
||||
#ax.grid()
|
||||
# Plot input resistance (real part of impedance)
|
||||
ax = plt.subplot(gs2[1, 0])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2)
|
||||
ax.set_title('Input impedance (resistive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Resistance [Ohms]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
ax.set_ylim(bottom=0)
|
||||
#ax.set_ylim([0, 300])
|
||||
ax.grid()
|
||||
|
||||
# Figure 3 - Comparison of numerical modelling techniques
|
||||
#fig3, ax = plt.subplots(num='FDTD vs MoM', figsize=(20, 5), facecolor='w', edgecolor='w')
|
||||
#gs3 = gridspec.GridSpec(1, 2, hspace=0.5)
|
||||
#
|
||||
## Plot input resistance (real part of impedance)
|
||||
#ax = plt.subplot(gs3[0, 0])
|
||||
#ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2, label='FDTD')
|
||||
#ax.plot(MoM['freqs'], MoM['zin'].real, 'r', lw=2, ls='--', label='MoM')
|
||||
#ax.set_title('Input impedance (resistive)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Resistance [Ohms]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
#ax.set_ylim(bottom=0)
|
||||
#ax.set_ylim([0, 350])
|
||||
#ax.grid()
|
||||
#ax.legend()
|
||||
#
|
||||
## Plot input reactance (imaginery part of impedance)
|
||||
#ax = plt.subplot(gs3[0, 1])
|
||||
#ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2, label='FDTD')
|
||||
#ax.plot(MoM['freqs'], -MoM['zin'].imag, 'r', lw=2, ls='--', label='MoM')
|
||||
#ax.set_title('Input impedance (reactive)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Reactance [Ohms]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
#ax.set_ylim([-350, 350])
|
||||
#ax.grid()
|
||||
#ax.legend()
|
||||
# Plot input reactance (imaginery part of impedance)
|
||||
ax = plt.subplot(gs2[1, 1])
|
||||
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, '-.')
|
||||
plt.setp(baseline, 'linewidth', 0)
|
||||
plt.setp(stemlines, 'color', 'g')
|
||||
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2)
|
||||
ax.set_title('Input impedance (reactive)')
|
||||
ax.set_xlabel('Frequency [Hz]')
|
||||
ax.set_ylabel('Reactance [Ohms]')
|
||||
#ax.set_xlim([0.88e9, 1.02e9])
|
||||
#ax.set_ylim([-200, 100])
|
||||
ax.grid()
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig3.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
## Plot input admittance (magnitude)
|
||||
#ax = plt.subplot(gs2[2, 0])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'g')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
#ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
|
||||
#ax.set_title('Input admittance (magnitude)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Admittance [Siemens]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
##ax.set_ylim([0, 0.035])
|
||||
#ax.grid()
|
||||
#
|
||||
## Plot input admittance (phase)
|
||||
#ax = plt.subplot(gs2[2, 1])
|
||||
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.')
|
||||
#plt.setp(baseline, 'linewidth', 0)
|
||||
#plt.setp(stemlines, 'color', 'g')
|
||||
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
|
||||
#ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
|
||||
#ax.set_title('Input admittance (phase)')
|
||||
#ax.set_xlabel('Frequency [Hz]')
|
||||
#ax.set_ylabel('Phase [degrees]')
|
||||
##ax.set_xlim([0.88e9, 1.02e9])
|
||||
##ax.set_ylim([-40, 100])
|
||||
#ax.grid()
|
||||
|
||||
# Save a PDF/PNG of the figure
|
||||
#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig3.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11, s21 parameters and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('-tln', default=1, type=int, help='transmitting antenna - transmission line number')
|
||||
parser.add_argument('-rxn', type=int, help='receiver antenna - output number')
|
||||
parser.add_argument('-rx', type=str, help='receiver antenna - output electric field component')
|
||||
args = parser.parse_args()
|
||||
|
||||
plot_antenna_params(args.outputfile, args.tln, args.rxn, args.rx)
|
||||
|
||||
plt.show()
|
||||
|
在新工单中引用
屏蔽一个用户