From 737794f36c34a64e074e9e9be2e03b1844451f95 Mon Sep 17 00:00:00 2001 From: Craig Warren Date: Mon, 9 May 2016 14:59:49 +0100 Subject: [PATCH] Updated to take optional command line arguments for receiver antenna to calculate s21 parameter. --- tools/plot_antenna_params.py | 610 +++++++++++++++++------------------ 1 file changed, 302 insertions(+), 308 deletions(-) diff --git a/tools/plot_antenna_params.py b/tools/plot_antenna_params.py index d8b15772..791444e4 100644 --- a/tools/plot_antenna_params.py +++ b/tools/plot_antenna_params.py @@ -21,345 +21,339 @@ import h5py import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec -#import scipy.io as sio -"""Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source.""" +from gprMax.exceptions import CmdInputError -# Parse command line arguments -parser = argparse.ArgumentParser(description='Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile') -parser.add_argument('outputfile', help='name of output file including path') -parser.add_argument('-tln', default=1, type=int, help='transmission line number') -args = parser.parse_args() -print("Antenna parameter analysis from file '{}'...".format(args.outputfile)) +def plot_antenna_params(filename, tln=1, rxn=None, rx=None): + """Calculates and plots antenna parameters - s11, (s21) and input impedance. + + Args: + filename (string): Filename (including path) of output file. + tln (int): Transmitting antenna - transmission line number + rxn (int): Receiver antenna - output number + rx (str): Receiver antenna - output electric field component + """ -# Open output file and read some attributes -file = args.outputfile -f = h5py.File(file, 'r') -dt = f.attrs['dt'] -iterations = f.attrs['Iterations'] + # Open output file and read some attributes + f = h5py.File(filename, 'r') + dt = f.attrs['dt'] + iterations = f.attrs['Iterations'] -# Choose a specific frequency bin spacing -#df = 1.5e6 -#iterations = int((1 / df) / dt) + # Calculate time array and frequency bin spacing + time = np.linspace(0, 1, iterations) + time *= (iterations * dt) + df = 1 / np.amax(time) -# Calculate time array and frequency bin spacing -time = np.linspace(0, 1, iterations) -time *= (iterations * dt) -df = 1 / np.amax(time) + print('Time window: {:g} s ({} iterations)'.format(np.amax(time), iterations)) + print('Time step: {:g} s'.format(dt)) + print('Frequency bin spacing: {:g} Hz'.format(df)) -print('Time window: {:g} s ({} iterations)'.format(np.amax(time), iterations)) -print('Time step: {:g} s'.format(dt)) -print('Frequency bin spacing: {:g} Hz'.format(df)) + # Read/calculate voltages and currents + tlpath = '/tls/tl' + str(tln) + '/' -# Read/calculate voltages and currents -path = '/tls/tl' + str(args.tln) + '/' -Vinc = f[path + 'Vinc'][:] -Iinc = f[path + 'Iinc'][:] -Vtotal = f[path +'Vtotal'][:] -Itotal = f[path +'Itotal'][:] -Vrec = f['/rxs/rx1/Ex'][:] * -1 -f.close() -Vref = Vtotal - Vinc -Iref = Itotal - Iinc + # Incident voltages/currents + Vinc = f[tlpath + 'Vinc'][:] + Iinc = f[tlpath + 'Iinc'][:] -# Frequency bins -freqs = np.fft.fftfreq(Vinc.size, d=dt) + # Total (incident + reflected) voltages/currents + Vtotal = f[tlpath +'Vtotal'][:] + Itotal = f[tlpath +'Itotal'][:] -# Delay correction - current lags voltage, so delay voltage to match current timestep -delaycorrection = np.exp(-1j * 2 * np.pi * freqs * (dt / 2)) + # Reflected voltages/currents + Vref = Vtotal - Vinc + Iref = Itotal - Iinc -# Calculate s11 -s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection) -s21 = np.abs(np.fft.fft(Vrec)) / np.abs(np.fft.fft(Vinc) * delaycorrection) + # If a receiver number for a receiever antenna is given can get received voltage for s21 + if rxn: + if rx not in ['Ex', 'Ey', 'Ez']: + raise CmdInputError('The field component for the receiver antenna output must be Ex, Ey, or Ez') + rxpath = '/rxs/rx' + str(rxn) + '/' + rx + # Received voltage + Vrec = f[rxpath][:] * -1 + f.close() -# Calculate input impedance -zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal) + # Frequency bins + freqs = np.fft.fftfreq(Vinc.size, d=dt) -# Load MoM zin from MATLAB antenna toolbox -#MoM = {} -#sio.loadmat('/../tests/numerical/vs_MoM_MATLAB/antenna_bowtie_fs/antenna_bowtie_fs_MoM.mat', MoM) + # Delay correction - current lags voltage, so delay voltage to match current timestep + delaycorrection = np.exp(-1j * 2 * np.pi * freqs * (dt / 2)) -# Calculate input admittance -yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection) + # Calculate s11 + s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection) + if rxn: + s21 = np.abs(np.fft.fft(Vrec)) / np.abs(np.fft.fft(Vinc) * delaycorrection) -# Convert to decibels -Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection))) -Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc))) -Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection))) -Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref))) -Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection))) -Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal))) -s11 = 20 * np.log10(s11) -s21 = 20 * np.log10(s21) + # Calculate input impedance + zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal) -# Set plotting range -pltrangemin = 1 -# To a certain drop from maximum power -pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1 -# To a maximum frequency -#pltrangemax = np.where(freqs > 6e9)[0][0] -pltrange = np.s_[pltrangemin:pltrangemax] + # Calculate input admittance + yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection) -# Print some useful values from s11, input impedance and admittance -s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0] -print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin])) -print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin])) -print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag)) -print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin]))) -print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True))) + # Convert to decibels + Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection))) + Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc))) + Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection))) + Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref))) + Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection))) + Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal))) + s11 = 20 * np.log10(s11) + if rxn: + s21 = 20 * np.log10(s21) -# Figure 1 -# Plot incident voltage -fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 12), facecolor='w', edgecolor='w') -gs1 = gridspec.GridSpec(4, 2, hspace=0.7) -ax = plt.subplot(gs1[0, 0]) -ax.plot(time, Vinc, 'r', lw=2, label='Vinc') -ax.set_title('Incident voltage') -ax.set_xlabel('Time [s]') -ax.set_ylabel('Voltage [V]') -ax.set_xlim([0, np.amax(time)]) -ax.grid() + # Set plotting range + pltrangemin = 1 + # To a certain drop from maximum power + pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1 + # To a maximum frequency + #pltrangemax = np.where(freqs > 6e9)[0][0] + pltrange = np.s_[pltrangemin:pltrangemax] -# Plot frequency spectra of incident voltage -ax = plt.subplot(gs1[0, 1]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'r') -plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') -ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2) -ax.set_title('Incident voltage') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Power [dB]') -ax.grid() + # Print some useful values from s11, and input impedance + s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0] + print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin])) + print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin])) + print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag)) + #print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin]))) + #print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True))) -# Plot incident current -ax = plt.subplot(gs1[1, 0]) -ax.plot(time, Iinc, 'b', lw=2, label='Vinc') -ax.set_title('Incident current') -ax.set_xlabel('Time [s]') -ax.set_ylabel('Current [A]') -ax.set_xlim([0, np.amax(time)]) -ax.grid() + # Figure 1 + # Plot incident voltage + fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 12), facecolor='w', edgecolor='w') + gs1 = gridspec.GridSpec(4, 2, hspace=0.7) + ax = plt.subplot(gs1[0, 0]) + ax.plot(time, Vinc, 'r', lw=2, label='Vinc') + ax.set_title('Incident voltage') + ax.set_xlabel('Time [s]') + ax.set_ylabel('Voltage [V]') + ax.set_xlim([0, np.amax(time)]) + ax.grid() -# Plot frequency spectra of incident current -ax = plt.subplot(gs1[1, 1]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'b') -plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') -ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2) -ax.set_title('Incident current') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Power [dB]') -ax.grid() + # Plot frequency spectra of incident voltage + ax = plt.subplot(gs1[0, 1]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'r') + plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') + ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2) + ax.set_title('Incident voltage') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Power [dB]') + ax.grid() -# Plot total voltage -ax = plt.subplot(gs1[2, 0]) -ax.plot(time, Vtotal, 'r', lw=2, label='Vinc') -ax.set_title('Total (incident + reflected) voltage') -ax.set_xlabel('Time [s]') -ax.set_ylabel('Voltage [V]') -ax.set_xlim([0, np.amax(time)]) -ax.grid() + # Plot incident current + ax = plt.subplot(gs1[1, 0]) + ax.plot(time, Iinc, 'b', lw=2, label='Vinc') + ax.set_title('Incident current') + ax.set_xlabel('Time [s]') + ax.set_ylabel('Current [A]') + ax.set_xlim([0, np.amax(time)]) + ax.grid() -# Plot frequency spectra of total voltage -ax = plt.subplot(gs1[2, 1]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'r') -plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') -ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2) -ax.set_title('Total (incident + reflected) voltage') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Power [dB]') -ax.grid() + # Plot frequency spectra of incident current + ax = plt.subplot(gs1[1, 1]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'b') + plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') + ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2) + ax.set_title('Incident current') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Power [dB]') + ax.grid() -# Plot total current -ax = plt.subplot(gs1[3, 0]) -ax.plot(time, Itotal, 'b', lw=2, label='Vinc') -ax.set_title('Total (incident + reflected) current') -ax.set_xlabel('Time [s]') -ax.set_ylabel('Current [A]') -ax.set_xlim([0, np.amax(time)]) -ax.grid() + # Plot total voltage + ax = plt.subplot(gs1[2, 0]) + ax.plot(time, Vtotal, 'r', lw=2, label='Vinc') + ax.set_title('Total (incident + reflected) voltage') + ax.set_xlabel('Time [s]') + ax.set_ylabel('Voltage [V]') + ax.set_xlim([0, np.amax(time)]) + ax.grid() -# Plot frequency spectra of reflected current -ax = plt.subplot(gs1[3, 1]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'b') -plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') -ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2) -ax.set_title('Total (incident + reflected) current') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Power [dB]') -ax.grid() + # Plot frequency spectra of total voltage + ax = plt.subplot(gs1[2, 1]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'r') + plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') + ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2) + ax.set_title('Total (incident + reflected) voltage') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Power [dB]') + ax.grid() -## Plot reflected (reflected) voltage -#ax = plt.subplot(gs1[4, 0]) -#ax.plot(time, Vref, 'r', lw=2, label='Vref') -#ax.set_title('Reflected voltage') -#ax.set_xlabel('Time [s]') -#ax.set_ylabel('Voltage [V]') -#ax.set_xlim([0, np.amax(time)]) -#ax.grid() -# -## Plot frequency spectra of reflected voltage -#ax = plt.subplot(gs1[4, 1]) -#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.') -#plt.setp(baseline, 'linewidth', 0) -#plt.setp(stemlines, 'color', 'r') -#plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') -#ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2) -#ax.set_title('Reflected voltage') -#ax.set_xlabel('Frequency [Hz]') -#ax.set_ylabel('Power [dB]') -#ax.grid() -# -## Plot reflected (reflected) current -#ax = plt.subplot(gs1[5, 0]) -#ax.plot(time, Iref, 'b', lw=2, label='Iref') -#ax.set_title('Reflected current') -#ax.set_xlabel('Time [s]') -#ax.set_ylabel('Current [A]') -#ax.set_xlim([0, np.amax(time)]) -#ax.grid() -# -## Plot frequency spectra of reflected current -#ax = plt.subplot(gs1[5, 1]) -#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.') -#plt.setp(baseline, 'linewidth', 0) -#plt.setp(stemlines, 'color', 'b') -#plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') -#ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2) -#ax.set_title('Reflected current') -#ax.set_xlabel('Frequency [Hz]') -#ax.set_ylabel('Power [dB]') -#ax.grid() + # Plot total current + ax = plt.subplot(gs1[3, 0]) + ax.plot(time, Itotal, 'b', lw=2, label='Vinc') + ax.set_title('Total (incident + reflected) current') + ax.set_xlabel('Time [s]') + ax.set_ylabel('Current [A]') + ax.set_xlim([0, np.amax(time)]) + ax.grid() -# Figure 2 -# Plot frequency spectra of s11 -fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w') -gs2 = gridspec.GridSpec(2, 2, hspace=0.5) -ax = plt.subplot(gs2[0, 0]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'g') -plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') -ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2) -ax.set_title('s11') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Power [dB]') -#ax.set_xlim([0.88e9, 1.02e9]) -ax.set_ylim([-20, 0]) -ax.grid() + # Plot frequency spectra of reflected current + ax = plt.subplot(gs1[3, 1]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'b') + plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') + ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2) + ax.set_title('Total (incident + reflected) current') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Power [dB]') + ax.grid() -# Plot frequency spectra of s21 -ax = plt.subplot(gs2[0, 1]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'g') -plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') -ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2) -ax.set_title('s21') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Power [dB]') -#ax.set_xlim([0.88e9, 1.02e9]) -ax.set_ylim([-25, 50]) -ax.grid() + ## Plot reflected (reflected) voltage + #ax = plt.subplot(gs1[4, 0]) + #ax.plot(time, Vref, 'r', lw=2, label='Vref') + #ax.set_title('Reflected voltage') + #ax.set_xlabel('Time [s]') + #ax.set_ylabel('Voltage [V]') + #ax.set_xlim([0, np.amax(time)]) + #ax.grid() + # + ## Plot frequency spectra of reflected voltage + #ax = plt.subplot(gs1[4, 1]) + #markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.') + #plt.setp(baseline, 'linewidth', 0) + #plt.setp(stemlines, 'color', 'r') + #plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') + #ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2) + #ax.set_title('Reflected voltage') + #ax.set_xlabel('Frequency [Hz]') + #ax.set_ylabel('Power [dB]') + #ax.grid() + # + ## Plot reflected (reflected) current + #ax = plt.subplot(gs1[5, 0]) + #ax.plot(time, Iref, 'b', lw=2, label='Iref') + #ax.set_title('Reflected current') + #ax.set_xlabel('Time [s]') + #ax.set_ylabel('Current [A]') + #ax.set_xlim([0, np.amax(time)]) + #ax.grid() + # + ## Plot frequency spectra of reflected current + #ax = plt.subplot(gs1[5, 1]) + #markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.') + #plt.setp(baseline, 'linewidth', 0) + #plt.setp(stemlines, 'color', 'b') + #plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b') + #ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2) + #ax.set_title('Reflected current') + #ax.set_xlabel('Frequency [Hz]') + #ax.set_ylabel('Power [dB]') + #ax.grid() -# Plot input resistance (real part of impedance) -ax = plt.subplot(gs2[1, 0]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'g') -plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') -ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2) -ax.set_title('Input impedance (resistive)') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Resistance [Ohms]') -#ax.set_xlim([0.88e9, 1.02e9]) -ax.set_ylim(bottom=0) -ax.set_ylim([0, 300]) -ax.grid() + # Figure 2 + # Plot frequency spectra of s11 + fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w') + gs2 = gridspec.GridSpec(2, 2, hspace=0.5) + ax = plt.subplot(gs2[0, 0]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'g') + plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') + ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2) + ax.set_title('s11') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Power [dB]') + #ax.set_xlim([0.88e9, 1.02e9]) + #ax.set_ylim([-20, 0]) + ax.grid() -# Plot input reactance (imaginery part of impedance) -ax = plt.subplot(gs2[1, 1]) -markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, '-.') -plt.setp(baseline, 'linewidth', 0) -plt.setp(stemlines, 'color', 'g') -plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') -ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2) -ax.set_title('Input impedance (reactive)') -ax.set_xlabel('Frequency [Hz]') -ax.set_ylabel('Reactance [Ohms]') -#ax.set_xlim([0.88e9, 1.02e9]) -ax.set_ylim([-200, 100]) -ax.grid() + # Plot frequency spectra of s21 + if rxn: + ax = plt.subplot(gs2[0, 1]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'g') + plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') + ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2) + ax.set_title('s21') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Power [dB]') + #ax.set_xlim([0.88e9, 1.02e9]) + #ax.set_ylim([-25, 50]) + ax.grid() -## Plot input admittance (magnitude) -#ax = plt.subplot(gs2[2, 0]) -#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.') -#plt.setp(baseline, 'linewidth', 0) -#plt.setp(stemlines, 'color', 'g') -#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') -#ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2) -#ax.set_title('Input admittance (magnitude)') -#ax.set_xlabel('Frequency [Hz]') -#ax.set_ylabel('Admittance [Siemens]') -##ax.set_xlim([0.88e9, 1.02e9]) -##ax.set_ylim([0, 0.035]) -#ax.grid() -# -## Plot input admittance (phase) -#ax = plt.subplot(gs2[2, 1]) -#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.') -#plt.setp(baseline, 'linewidth', 0) -#plt.setp(stemlines, 'color', 'g') -#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') -#ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2) -#ax.set_title('Input admittance (phase)') -#ax.set_xlabel('Frequency [Hz]') -#ax.set_ylabel('Phase [degrees]') -##ax.set_xlim([0.88e9, 1.02e9]) -##ax.set_ylim([-40, 100]) -#ax.grid() + # Plot input resistance (real part of impedance) + ax = plt.subplot(gs2[1, 0]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'g') + plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') + ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2) + ax.set_title('Input impedance (resistive)') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Resistance [Ohms]') + #ax.set_xlim([0.88e9, 1.02e9]) + ax.set_ylim(bottom=0) + #ax.set_ylim([0, 300]) + ax.grid() -# Figure 3 - Comparison of numerical modelling techniques -#fig3, ax = plt.subplots(num='FDTD vs MoM', figsize=(20, 5), facecolor='w', edgecolor='w') -#gs3 = gridspec.GridSpec(1, 2, hspace=0.5) -# -## Plot input resistance (real part of impedance) -#ax = plt.subplot(gs3[0, 0]) -#ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2, label='FDTD') -#ax.plot(MoM['freqs'], MoM['zin'].real, 'r', lw=2, ls='--', label='MoM') -#ax.set_title('Input impedance (resistive)') -#ax.set_xlabel('Frequency [Hz]') -#ax.set_ylabel('Resistance [Ohms]') -##ax.set_xlim([0.88e9, 1.02e9]) -#ax.set_ylim(bottom=0) -#ax.set_ylim([0, 350]) -#ax.grid() -#ax.legend() -# -## Plot input reactance (imaginery part of impedance) -#ax = plt.subplot(gs3[0, 1]) -#ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2, label='FDTD') -#ax.plot(MoM['freqs'], -MoM['zin'].imag, 'r', lw=2, ls='--', label='MoM') -#ax.set_title('Input impedance (reactive)') -#ax.set_xlabel('Frequency [Hz]') -#ax.set_ylabel('Reactance [Ohms]') -##ax.set_xlim([0.88e9, 1.02e9]) -#ax.set_ylim([-350, 350]) -#ax.grid() -#ax.legend() + # Plot input reactance (imaginery part of impedance) + ax = plt.subplot(gs2[1, 1]) + markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, '-.') + plt.setp(baseline, 'linewidth', 0) + plt.setp(stemlines, 'color', 'g') + plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') + ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2) + ax.set_title('Input impedance (reactive)') + ax.set_xlabel('Frequency [Hz]') + ax.set_ylabel('Reactance [Ohms]') + #ax.set_xlim([0.88e9, 1.02e9]) + #ax.set_ylim([-200, 100]) + ax.grid() -# Save a PDF/PNG of the figure -#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) -#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) -#fig3.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) -#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) -#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) + ## Plot input admittance (magnitude) + #ax = plt.subplot(gs2[2, 0]) + #markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.') + #plt.setp(baseline, 'linewidth', 0) + #plt.setp(stemlines, 'color', 'g') + #plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') + #ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2) + #ax.set_title('Input admittance (magnitude)') + #ax.set_xlabel('Frequency [Hz]') + #ax.set_ylabel('Admittance [Siemens]') + ##ax.set_xlim([0.88e9, 1.02e9]) + ##ax.set_ylim([0, 0.035]) + #ax.grid() + # + ## Plot input admittance (phase) + #ax = plt.subplot(gs2[2, 1]) + #markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.') + #plt.setp(baseline, 'linewidth', 0) + #plt.setp(stemlines, 'color', 'g') + #plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g') + #ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2) + #ax.set_title('Input admittance (phase)') + #ax.set_xlabel('Frequency [Hz]') + #ax.set_ylabel('Phase [degrees]') + ##ax.set_xlim([0.88e9, 1.02e9]) + ##ax.set_ylim([-40, 100]) + #ax.grid() + + # Save a PDF/PNG of the figure + #fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) + #fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) + #fig3.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) + #fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) + #fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) + + plt.show() + + +if __name__ == "__main__": + + # Parse command line arguments + parser = argparse.ArgumentParser(description='Plots antenna parameters (s11, s21 parameters and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile') + parser.add_argument('outputfile', help='name of output file including path') + parser.add_argument('-tln', default=1, type=int, help='transmitting antenna - transmission line number') + parser.add_argument('-rxn', type=int, help='receiver antenna - output number') + parser.add_argument('-rx', type=str, help='receiver antenna - output electric field component') + args = parser.parse_args() + + plot_antenna_params(args.outputfile, args.tln, args.rxn, args.rx) -plt.show()