Changed name of some of the Taguchi opt modules.

这个提交包含在:
Craig Warren
2016-05-04 13:14:20 +01:00
父节点 9ff67ca62c
当前提交 0f6e644b4c
共有 6 个文件被更改,包括 65 次插入45 次删除

查看文件

@@ -45,15 +45,15 @@ Package overview
.. code-block:: none
antenna_bowtie_opt.in
fitness_functions.py
OA_9_4_3_2.npy
OA_18_7_3_2.npy
optimisation_taguchi_fitness.py
optimisation_taguchi_plot.py
plot_results.py
* ``antenna_bowtie_opt.in`` is a example model of a bowtie antenna where values of loading resistors are optimised.
* ``fitness_functions.py`` is a module containing fitness functions. There are some pre-built ones but users should add their own here.
* ``OA_9_4_3_2.npy`` and ``OA_18_7_3_2.npy`` are NumPy archives containing pre-built OAs from http://neilsloane.com/oadir/
* ``optimisation_taguchi_fitness.py`` is a module containing fitness functions. There are some pre-built ones but users should add their own here.
* ``optimisation_taguchi_plot.py`` is a module for plotting the results, such as parameter values and convergence history, from an optimisation process when it has completed.
* ``plot_results.py`` is a module for plotting the results, such as parameter values and convergence history, from an optimisation process when it has completed.
Implementation
--------------
@@ -67,7 +67,7 @@ The process by which Taguchi's method optimises parameters is illustrated in the
In stage 1a, one of the 2 pre-built OAs will automatically be chosen depending on the number of parameters to optimise. Currently, up to 7 independent parameters can be optimised, although a method to construct OAs of any size is under testing.
In stage 1b, a fitness function is required to set a goal against which to compare results from the optimisation process. A number of pre-built fitness functions can be found in the ``optimisation_taguchi_fitness.py`` module, e.g. ``minvalue``, ``maxvalue`` and ``xcorr``. Users can also easily add their own fitness functions to this module. All fitness functions must take two arguments:
In stage 1b, a fitness function is required to set a goal against which to compare results from the optimisation process. A number of pre-built fitness functions can be found in the ``fitness_functions.py`` module, e.g. ``minvalue``, ``maxvalue`` and ``xcorr``. Users can also easily add their own fitness functions to this module. All fitness functions must take two arguments:
* ``filename`` a string containing the full path and filename of the output file
* ``args`` a dictionary which can contain any number of additional arguments for the function, e.g. names (IDs) of outputs (rxs) from input file
@@ -114,11 +114,11 @@ The bowtie design features 3 vertical slots (y-direction) in each arm of the bow
:language: none
:linenos:
The first part of the input file (lines 1-7) contains the parameters to optimise, their initial ranges, and fitness function information for the optimisation process. Three parameters representing the resistor values are defined with ranges between 0.1 :math:`\Omega` and 5 :math:`k\Omega`. A fitness function called ``maxvalue`` with a stopping criterion of 50V/m. The output point in the model that will be used in the optimisation is specified as having the name ``Ex60mm``. Finally, a limit of 5 iterations is placed on the optimisation process, i.e. it will stop after 5 iterations irrespectively of whether it has reached the target of 50V/m.
The first part of the input file (lines 1-7) contains the parameters to optimise, their initial ranges, and fitness function information for the optimisation process. Three parameters representing the resistor values are defined with ranges between 0.1 :math:`\Omega` and 5 :math:`k\Omega`. A pre-built fitness function called ``maxvalue`` is specified with a stopping criterion of 50V/m. The output point in the model that will be used in the optimisation is specified as having the name ``Ex60mm``. Finally, a limit of 5 iterations is placed on the optimisation process, i.e. it will stop after 5 iterations irrespectively of whether it has reached the target of 50V/m.
The next part of the input file (lines 9-93) contains the model. For the most part there is nothing special about the way the model is defined - a mixture of Python, NumPy and functional forms of the input commands (available by importing the module ``input_cmd_funcs``) are used. However, it is worth pointing out how the values of the parameters to optimise are accessed. On line 29 a NumPy array of the values of the resistors is created. The values are accessed using their names as keys to the ``optparams`` dictionary. On line 30 the values of the resistors are converted to conductivities, which are used to create new materials (line 34-35). The resistors are then built by applying the materials to cell edges (e.g. lines 55-62). The output point in the model in specifed with the name ``Ex60mm`` and as having only an ``Ex`` field output (line 42).
The optimisation process is run on the model using the ``--opt-taguchi`` command line flag:
The optimisation process is run on the model using the ``--opt-taguchi`` command line flag.
.. code-block:: none
@@ -127,3 +127,8 @@ The optimisation process is run on the model using the ``--opt-taguchi`` command
Results
^^^^^^^
When the optimisation has completed a summary will be printed showing histories of the parameter values and the fitness metric. These values are also saved (pickled) to file and can be plotted using the ``plot_results.py`` module, for example:
.. code-block:: none
python -m user_libs.optimisation_taguchi.plot_results antenna_bowtie_opt_hist.pickle

查看文件

@@ -62,7 +62,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
optparamshist = OrderedDict((key, list()) for key in optparams)
# Import specified fitness function
fitness_metric = getattr(importlib.import_module('user_libs.optimisation_taguchi.optimisation_taguchi_fitness'), fitness['name'])
fitness_metric = getattr(importlib.import_module('user_libs.optimisation_taguchi.fitness_functions'), fitness['name'])
# Select OA
OA, N, cols, k, s, t = construct_OA(optparams)

查看文件

@@ -16,15 +16,13 @@
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import os, argparse
import argparse, os
import h5py
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#import scipy.io as sio
moduledirectory = os.path.dirname(os.path.abspath(__file__))
"""Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source."""
# Parse command line arguments
@@ -60,6 +58,7 @@ Vinc = f[path + 'Vinc'][:]
Iinc = f[path + 'Iinc'][:]
Vtotal = f[path +'Vtotal'][:]
Itotal = f[path +'Itotal'][:]
Vrec = f['/rxs/rx1/Ex'][:] * -1
f.close()
Vref = Vtotal - Vinc
Iref = Itotal - Iinc
@@ -72,13 +71,14 @@ delaycorrection = np.exp(-1j * 2 * np.pi * freqs * (dt / 2))
# Calculate s11
s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection)
s21 = np.abs(np.fft.fft(Vrec)) / np.abs(np.fft.fft(Vinc) * delaycorrection)
# Calculate input impedance
zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal)
# Load MoM zin from MATLAB antenna toolbox
#MoM = {}
#sio.loadmat(moduledirectory + '/../tests/numerical/vs_MoM_MATLAB/antenna_bowtie_fs/antenna_bowtie_fs_MoM.mat', MoM)
#sio.loadmat('/../tests/numerical/vs_MoM_MATLAB/antenna_bowtie_fs/antenna_bowtie_fs_MoM.mat', MoM)
# Calculate input admittance
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
@@ -91,6 +91,7 @@ Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref)))
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
s11 = 20 * np.log10(s11)
s21 = 20 * np.log10(s21)
# Set plotting range
pltrangemin = 1
@@ -240,7 +241,7 @@ ax.grid()
# Figure 2
# Plot frequency spectra of s11
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
gs2 = gridspec.GridSpec(3, 2, hspace=0.5)
gs2 = gridspec.GridSpec(2, 2, hspace=0.5)
ax = plt.subplot(gs2[0, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
@@ -251,7 +252,21 @@ ax.set_title('s11')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
#ax.set_xlim([0.88e9, 1.02e9])
#ax.set_ylim([-20, 0])
ax.set_ylim([-20, 0])
ax.grid()
# Plot frequency spectra of s21
ax = plt.subplot(gs2[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
ax.set_title('s21')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
#ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim([-25, 50])
ax.grid()
# Plot input resistance (real part of impedance)
@@ -266,7 +281,7 @@ ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Resistance [Ohms]')
#ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim(bottom=0)
#ax.set_ylim([0, 350])
ax.set_ylim([0, 300])
ax.grid()
# Plot input reactance (imaginery part of impedance)
@@ -280,36 +295,36 @@ ax.set_title('Input impedance (reactive)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Reactance [Ohms]')
#ax.set_xlim([0.88e9, 1.02e9])
#ax.set_ylim([-1400, 200])
ax.set_ylim([-200, 100])
ax.grid()
# Plot input admittance (magnitude)
ax = plt.subplot(gs2[2, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
ax.set_title('Input admittance (magnitude)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Admittance [Siemens]')
#ax.set_xlim([0.88e9, 1.02e9])
#ax.set_ylim([0, 0.035])
ax.grid()
# Plot input admittance (phase)
ax = plt.subplot(gs2[2, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
ax.set_title('Input admittance (phase)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Phase [degrees]')
#ax.set_xlim([0.88e9, 1.02e9])
#ax.set_ylim([-40, 100])
ax.grid()
## Plot input admittance (magnitude)
#ax = plt.subplot(gs2[2, 0])
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.')
#plt.setp(baseline, 'linewidth', 0)
#plt.setp(stemlines, 'color', 'g')
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
#ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
#ax.set_title('Input admittance (magnitude)')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Admittance [Siemens]')
##ax.set_xlim([0.88e9, 1.02e9])
##ax.set_ylim([0, 0.035])
#ax.grid()
#
## Plot input admittance (phase)
#ax = plt.subplot(gs2[2, 1])
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.')
#plt.setp(baseline, 'linewidth', 0)
#plt.setp(stemlines, 'color', 'g')
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
#ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
#ax.set_title('Input admittance (phase)')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Phase [degrees]')
##ax.set_xlim([0.88e9, 1.02e9])
##ax.set_ylim([-40, 100])
#ax.grid()
# Figure 3 - Comparison of numerical modelling techniques
#fig3, ax = plt.subplots(num='FDTD vs MoM', figsize=(20, 5), facecolor='w', edgecolor='w')

查看文件

@@ -2,7 +2,7 @@
optparams['resinner'] = [0.1, 5000]
optparams['resmiddle'] = [0.1, 5000]
optparams['resouter'] = [0.1, 5000]
fitness = {'name': 'compactness', 'stop': 30, 'args': {'outputs': 'Ex60mm'}}
fitness = {'name': 'maxvalue', 'stop': 50, 'args': {'outputs': 'Ex60mm'}}
maxiterations = 5
#end_taguchi:

查看文件

@@ -12,7 +12,7 @@ from gprMax.optimisation_taguchi import plot_optimisation_history
"""Plots the results (pickled to file) from a Taguchi optimisation process."""
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots the results (pickled to file) from a Taguchi optimisation process.', usage='cd gprMax; python -m user_libs.optimisation_taguchi_plot picklefile')
parser = argparse.ArgumentParser(description='Plots the results (pickled to file) from a Taguchi optimisation process.', usage='cd gprMax; python -m user_libs.optimisation_taguchi.plot_results picklefile')
parser.add_argument('picklefile', help='name of file including path')
args = parser.parse_args()