文件
gprMax/tools/plot_antenna_params.py
2016-05-04 13:14:20 +01:00

366 行
14 KiB
Python

# Copyright (C) 2015-2016: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import argparse, os
import h5py
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#import scipy.io as sio
"""Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source."""
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11 parameter and input impedance and admittance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('-tln', default=1, type=int, help='transmission line number')
args = parser.parse_args()
print("Antenna parameter analysis from file '{}'...".format(args.outputfile))
# Open output file and read some attributes
file = args.outputfile
f = h5py.File(file, 'r')
dt = f.attrs['dt']
iterations = f.attrs['Iterations']
# Choose a specific frequency bin spacing
#df = 1.5e6
#iterations = int((1 / df) / dt)
# Calculate time array and frequency bin spacing
time = np.linspace(0, 1, iterations)
time *= (iterations * dt)
df = 1 / np.amax(time)
print('Time window: {:g} s ({} iterations)'.format(np.amax(time), iterations))
print('Time step: {:g} s'.format(dt))
print('Frequency bin spacing: {:g} Hz'.format(df))
# Read/calculate voltages and currents
path = '/tls/tl' + str(args.tln) + '/'
Vinc = f[path + 'Vinc'][:]
Iinc = f[path + 'Iinc'][:]
Vtotal = f[path +'Vtotal'][:]
Itotal = f[path +'Itotal'][:]
Vrec = f['/rxs/rx1/Ex'][:] * -1
f.close()
Vref = Vtotal - Vinc
Iref = Itotal - Iinc
# Frequency bins
freqs = np.fft.fftfreq(Vinc.size, d=dt)
# Delay correction - current lags voltage, so delay voltage to match current timestep
delaycorrection = np.exp(-1j * 2 * np.pi * freqs * (dt / 2))
# Calculate s11
s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection)
s21 = np.abs(np.fft.fft(Vrec)) / np.abs(np.fft.fft(Vinc) * delaycorrection)
# Calculate input impedance
zin = (np.fft.fft(Vtotal) * delaycorrection) / np.fft.fft(Itotal)
# Load MoM zin from MATLAB antenna toolbox
#MoM = {}
#sio.loadmat('/../tests/numerical/vs_MoM_MATLAB/antenna_bowtie_fs/antenna_bowtie_fs_MoM.mat', MoM)
# Calculate input admittance
yin = np.fft.fft(Itotal) / (np.fft.fft(Vtotal) * delaycorrection)
# Convert to decibels
Vincp = 20 * np.log10(np.abs((np.fft.fft(Vinc) * delaycorrection)))
Iincp = 20 * np.log10(np.abs(np.fft.fft(Iinc)))
Vrefp = 20 * np.log10(np.abs((np.fft.fft(Vref) * delaycorrection)))
Irefp = 20 * np.log10(np.abs(np.fft.fft(Iref)))
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
s11 = 20 * np.log10(s11)
s21 = 20 * np.log10(s21)
# Set plotting range
pltrangemin = 1
# To a certain drop from maximum power
pltrangemax = np.where((np.amax(Vincp[1::]) - Vincp[1::]) > 60)[0][0] + 1
# To a maximum frequency
#pltrangemax = np.where(freqs > 6e9)[0][0]
pltrange = np.s_[pltrangemin:pltrangemax]
# Print some useful values from s11, input impedance and admittance
s11minfreq = np.where(s11[pltrange] == np.amin(s11[pltrange]))[0][0]
print('s11 minimum: {:g} dB at {:g} Hz'.format(np.amin(s11[pltrange]), freqs[s11minfreq + pltrangemin]))
print('At {:g} Hz...'.format(freqs[s11minfreq + pltrangemin]))
print('Input impedance: {:.1f}{:+.1f}j Ohms'.format(np.abs(zin[s11minfreq + pltrangemin]), zin[s11minfreq + pltrangemin].imag))
print('Input admittance (mag): {:g} S'.format(np.abs(yin[s11minfreq + pltrangemin])))
print('Input admittance (phase): {:.1f} deg'.format(np.angle(yin[s11minfreq + pltrangemin], deg=True)))
# Figure 1
# Plot incident voltage
fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
gs1 = gridspec.GridSpec(4, 2, hspace=0.7)
ax = plt.subplot(gs1[0, 0])
ax.plot(time, Vinc, 'r', lw=2, label='Vinc')
ax.set_title('Incident voltage')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Voltage [V]')
ax.set_xlim([0, np.amax(time)])
ax.grid()
# Plot frequency spectra of incident voltage
ax = plt.subplot(gs1[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vincp[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax.plot(freqs[pltrange], Vincp[pltrange], 'r', lw=2)
ax.set_title('Incident voltage')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid()
# Plot incident current
ax = plt.subplot(gs1[1, 0])
ax.plot(time, Iinc, 'b', lw=2, label='Vinc')
ax.set_title('Incident current')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Current [A]')
ax.set_xlim([0, np.amax(time)])
ax.grid()
# Plot frequency spectra of incident current
ax = plt.subplot(gs1[1, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Iincp[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
ax.plot(freqs[pltrange], Iincp[pltrange], 'b', lw=2)
ax.set_title('Incident current')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid()
# Plot total voltage
ax = plt.subplot(gs1[2, 0])
ax.plot(time, Vtotal, 'r', lw=2, label='Vinc')
ax.set_title('Total (incident + reflected) voltage')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Voltage [V]')
ax.set_xlim([0, np.amax(time)])
ax.grid()
# Plot frequency spectra of total voltage
ax = plt.subplot(gs1[2, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vtotalp[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax.plot(freqs[pltrange], Vtotalp[pltrange], 'r', lw=2)
ax.set_title('Total (incident + reflected) voltage')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid()
# Plot total current
ax = plt.subplot(gs1[3, 0])
ax.plot(time, Itotal, 'b', lw=2, label='Vinc')
ax.set_title('Total (incident + reflected) current')
ax.set_xlabel('Time [s]')
ax.set_ylabel('Current [A]')
ax.set_xlim([0, np.amax(time)])
ax.grid()
# Plot frequency spectra of reflected current
ax = plt.subplot(gs1[3, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], Itotalp[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
ax.plot(freqs[pltrange], Itotalp[pltrange], 'b', lw=2)
ax.set_title('Total (incident + reflected) current')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
ax.grid()
## Plot reflected (reflected) voltage
#ax = plt.subplot(gs1[4, 0])
#ax.plot(time, Vref, 'r', lw=2, label='Vref')
#ax.set_title('Reflected voltage')
#ax.set_xlabel('Time [s]')
#ax.set_ylabel('Voltage [V]')
#ax.set_xlim([0, np.amax(time)])
#ax.grid()
#
## Plot frequency spectra of reflected voltage
#ax = plt.subplot(gs1[4, 1])
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Vrefp[pltrange], '-.')
#plt.setp(baseline, 'linewidth', 0)
#plt.setp(stemlines, 'color', 'r')
#plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
#ax.plot(freqs[pltrange], Vrefp[pltrange], 'r', lw=2)
#ax.set_title('Reflected voltage')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Power [dB]')
#ax.grid()
#
## Plot reflected (reflected) current
#ax = plt.subplot(gs1[5, 0])
#ax.plot(time, Iref, 'b', lw=2, label='Iref')
#ax.set_title('Reflected current')
#ax.set_xlabel('Time [s]')
#ax.set_ylabel('Current [A]')
#ax.set_xlim([0, np.amax(time)])
#ax.grid()
#
## Plot frequency spectra of reflected current
#ax = plt.subplot(gs1[5, 1])
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], Irefp[pltrange], '-.')
#plt.setp(baseline, 'linewidth', 0)
#plt.setp(stemlines, 'color', 'b')
#plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
#ax.plot(freqs[pltrange], Irefp[pltrange], 'b', lw=2)
#ax.set_title('Reflected current')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Power [dB]')
#ax.grid()
# Figure 2
# Plot frequency spectra of s11
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 12), facecolor='w', edgecolor='w')
gs2 = gridspec.GridSpec(2, 2, hspace=0.5)
ax = plt.subplot(gs2[0, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s11[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], s11[pltrange], 'g', lw=2)
ax.set_title('s11')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
#ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim([-20, 0])
ax.grid()
# Plot frequency spectra of s21
ax = plt.subplot(gs2[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], s21[pltrange], 'g', lw=2)
ax.set_title('s21')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Power [dB]')
#ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim([-25, 50])
ax.grid()
# Plot input resistance (real part of impedance)
ax = plt.subplot(gs2[1, 0])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].real, '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2)
ax.set_title('Input impedance (resistive)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Resistance [Ohms]')
#ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim(bottom=0)
ax.set_ylim([0, 300])
ax.grid()
# Plot input reactance (imaginery part of impedance)
ax = plt.subplot(gs2[1, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], zin[pltrange].imag, '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2)
ax.set_title('Input impedance (reactive)')
ax.set_xlabel('Frequency [Hz]')
ax.set_ylabel('Reactance [Ohms]')
#ax.set_xlim([0.88e9, 1.02e9])
ax.set_ylim([-200, 100])
ax.grid()
## Plot input admittance (magnitude)
#ax = plt.subplot(gs2[2, 0])
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.abs(yin[pltrange]), '-.')
#plt.setp(baseline, 'linewidth', 0)
#plt.setp(stemlines, 'color', 'g')
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
#ax.plot(freqs[pltrange], np.abs(yin[pltrange]), 'g', lw=2)
#ax.set_title('Input admittance (magnitude)')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Admittance [Siemens]')
##ax.set_xlim([0.88e9, 1.02e9])
##ax.set_ylim([0, 0.035])
#ax.grid()
#
## Plot input admittance (phase)
#ax = plt.subplot(gs2[2, 1])
#markerline, stemlines, baseline = ax.stem(freqs[pltrange], np.angle(yin[pltrange], deg=True), '-.')
#plt.setp(baseline, 'linewidth', 0)
#plt.setp(stemlines, 'color', 'g')
#plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
#ax.plot(freqs[pltrange], np.angle(yin[pltrange], deg=True), 'g', lw=2)
#ax.set_title('Input admittance (phase)')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Phase [degrees]')
##ax.set_xlim([0.88e9, 1.02e9])
##ax.set_ylim([-40, 100])
#ax.grid()
# Figure 3 - Comparison of numerical modelling techniques
#fig3, ax = plt.subplots(num='FDTD vs MoM', figsize=(20, 5), facecolor='w', edgecolor='w')
#gs3 = gridspec.GridSpec(1, 2, hspace=0.5)
#
## Plot input resistance (real part of impedance)
#ax = plt.subplot(gs3[0, 0])
#ax.plot(freqs[pltrange], zin[pltrange].real, 'g', lw=2, label='FDTD')
#ax.plot(MoM['freqs'], MoM['zin'].real, 'r', lw=2, ls='--', label='MoM')
#ax.set_title('Input impedance (resistive)')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Resistance [Ohms]')
##ax.set_xlim([0.88e9, 1.02e9])
#ax.set_ylim(bottom=0)
#ax.set_ylim([0, 350])
#ax.grid()
#ax.legend()
#
## Plot input reactance (imaginery part of impedance)
#ax = plt.subplot(gs3[0, 1])
#ax.plot(freqs[pltrange], zin[pltrange].imag, 'g', lw=2, label='FDTD')
#ax.plot(MoM['freqs'], -MoM['zin'].imag, 'r', lw=2, ls='--', label='MoM')
#ax.set_title('Input impedance (reactive)')
#ax.set_xlabel('Frequency [Hz]')
#ax.set_ylabel('Reactance [Ohms]')
##ax.set_xlim([0.88e9, 1.02e9])
#ax.set_ylim([-350, 350])
#ax.grid()
#ax.legend()
# Save a PDF/PNG of the figure
#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
#fig3.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
plt.show()