你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
156 行
6.0 KiB
Python
156 行
6.0 KiB
Python
# Copyright (C) 2015: The University of Edinburgh
|
|
# Authors: Craig Warren and Antonis Giannopoulos
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import os, argparse
|
|
import h5py
|
|
import numpy as np
|
|
np.seterr(divide='ignore', invalid='ignore')
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.gridspec as gridspec
|
|
|
|
from gprMax.exceptions import CmdInputError
|
|
|
|
"""Plots antenna parameters (s11 parameter and input impedance) from an output file containing a transmission line source."""
|
|
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11 parameter and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
|
|
parser.add_argument('outputfile', help='name of output file including path')
|
|
parser.add_argument('-tln', default=1, type=int, help='transmission line number')
|
|
args = parser.parse_args()
|
|
|
|
# Open output file and read some attributes
|
|
file = args.outputfile
|
|
f = h5py.File(file, 'r')
|
|
dt = f.attrs['dt']
|
|
iterations = f.attrs['Iterations']
|
|
time = np.arange(0, dt * iterations, dt)
|
|
time = time / 1e-9
|
|
|
|
path = '/tls/tl' + str(args.tln) + '/'
|
|
Vinc = f[path + 'Vinc'][:]
|
|
Vscat = f[path + 'Vscat'][:]
|
|
Iscat = f[path + 'Iscat'][:]
|
|
Vtotal = f[path +'Vtotal'][:]
|
|
|
|
# Calculate magnitude of frequency spectra
|
|
Vincp = np.abs(np.fft.fft(Vinc))**2
|
|
freqs = np.fft.fftfreq(Vincp.size, d=dt)
|
|
Vscatp = np.abs(np.fft.fft(Vscat))**2
|
|
s11 = Vscatp / Vincp
|
|
zin = np.zeros(iterations, dtype=np.complex)
|
|
zin = np.abs(np.fft.fft(Vscat)) / np.abs(np.fft.fft(Iscat))
|
|
|
|
# Convert to decibels
|
|
Vincp = 10 * np.log10(Vincp)
|
|
Vscatp = 10 * np.log10(Vscatp)
|
|
s11 = 10 * np.log10(s11)
|
|
|
|
# Set plotting range to -60dB from maximum power
|
|
pltrange = np.where((np.amax(Vincp) - Vincp) > 60)[0][0] + 1
|
|
pltrange = np.s_[0:pltrange]
|
|
|
|
# Plot incident voltage
|
|
fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
gs1 = gridspec.GridSpec(2, 2, hspace=0.3)
|
|
ax1 = plt.subplot(gs1[0, 0])
|
|
ax1.plot(time, Vinc, 'r', lw=2, label='Vinc')
|
|
ax1.set_title('Incident voltage')
|
|
ax1.set_xlabel('Time [ns]')
|
|
ax1.set_ylabel('Voltage [V]')
|
|
ax1.set_xlim([0, np.amax(time)])
|
|
ax1.grid()
|
|
|
|
# Plot frequency spectra of incident voltage
|
|
ax2 = plt.subplot(gs1[0, 1])
|
|
markerline, stemlines, baseline = ax2.stem(freqs[pltrange]/1e9, Vincp[pltrange], '-.')
|
|
plt.setp(baseline, 'linewidth', 0)
|
|
plt.setp(stemlines, 'color', 'r')
|
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
ax2.plot(freqs[pltrange]/1e9, Vincp[pltrange], 'r', lw=2)
|
|
ax2.set_title('Incident voltage')
|
|
ax2.set_xlabel('Frequency [GHz]')
|
|
ax2.set_ylabel('Power [dB]')
|
|
ax2.grid()
|
|
|
|
# Plot scattered (field) voltage
|
|
ax3 = plt.subplot(gs1[1, 0])
|
|
ax3.plot(time, Vscat, 'r', lw=2, label='Vscat')
|
|
ax3.set_title('Reflected voltage')
|
|
ax3.set_xlabel('Time [ns]')
|
|
ax3.set_ylabel('Voltage [V]')
|
|
ax3.set_xlim([0, np.amax(time)])
|
|
ax3.grid()
|
|
|
|
# Plot frequency spectra of scattered voltage
|
|
ax4 = plt.subplot(gs1[1, 1])
|
|
markerline, stemlines, baseline = ax4.stem(freqs[pltrange]/1e9, Vscatp[pltrange], '-.')
|
|
plt.setp(baseline, 'linewidth', 0)
|
|
plt.setp(stemlines, 'color', 'r')
|
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
ax4.plot(freqs[pltrange]/1e9, Vscatp[pltrange], 'r', lw=2)
|
|
ax4.set_title('Reflected voltage')
|
|
ax4.set_xlabel('Frequency [GHz]')
|
|
ax4.set_ylabel('Power [dB]')
|
|
ax4.grid()
|
|
|
|
# Plot frequency spectra of s11
|
|
fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 10), facecolor='w', edgecolor='w')
|
|
gs2 = gridspec.GridSpec(2, 2, hspace=0.3)
|
|
ax5 = plt.subplot(gs2[0, 0])
|
|
markerline, stemlines, baseline = ax5.stem(freqs[pltrange]/1e9, s11[pltrange], '-.')
|
|
plt.setp(baseline, 'linewidth', 0)
|
|
plt.setp(stemlines, 'color', 'r')
|
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
ax5.plot(freqs[pltrange]/1e9, s11[pltrange], 'r', lw=2)
|
|
ax5.set_title('s11 parameter')
|
|
ax5.set_xlabel('Frequency [GHz]')
|
|
ax5.set_ylabel('Power [dB]')
|
|
ax5.grid()
|
|
|
|
# Plot input resistance (real part of impedance)
|
|
ax6 = plt.subplot(gs2[1, 0])
|
|
markerline, stemlines, baseline = ax6.stem(freqs[pltrange]/1e9, zin[pltrange].real, '-.')
|
|
plt.setp(baseline, 'linewidth', 0)
|
|
plt.setp(stemlines, 'color', 'r')
|
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
ax6.plot(freqs[pltrange]/1e9, zin[pltrange].real, 'r', lw=2)
|
|
ax6.set_title('Input impedance')
|
|
ax6.set_xlabel('Frequency [GHz]')
|
|
ax6.set_ylabel('Resistance [Ohms]')
|
|
ax6.set_ylim(bottom=0)
|
|
ax6.grid()
|
|
|
|
# Plot input reactance (imaginery part of impedance)
|
|
ax7 = plt.subplot(gs2[1, 1])
|
|
markerline, stemlines, baseline = ax7.stem(freqs[pltrange]/1e9, zin[pltrange].imag, '-.')
|
|
plt.setp(baseline, 'linewidth', 0)
|
|
plt.setp(stemlines, 'color', 'r')
|
|
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
|
ax7.plot(freqs[pltrange]/1e9, zin[pltrange].imag, 'r', lw=2)
|
|
ax7.set_title('Input impedance')
|
|
ax7.set_xlabel('Frequency [GHz]')
|
|
ax7.set_ylabel('Reactance [Ohms]')
|
|
ax7.set_ylim(bottom=0)
|
|
ax7.grid()
|
|
|
|
plt.show()
|
|
fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
|
fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
|
#fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
|
#fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
|
f.close() |