# Copyright (C) 2015: The University of Edinburgh # Authors: Craig Warren and Antonis Giannopoulos # # This file is part of gprMax. # # gprMax is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # gprMax is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with gprMax. If not, see . import os, argparse import h5py import numpy as np np.seterr(divide='ignore', invalid='ignore') import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from gprMax.exceptions import CmdInputError """Plots antenna parameters (s11 parameter and input impedance) from an output file containing a transmission line source.""" # Parse command line arguments parser = argparse.ArgumentParser(description='Plots antenna parameters (s11 parameter and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile') parser.add_argument('outputfile', help='name of output file including path') parser.add_argument('-tln', default=1, type=int, help='transmission line number') args = parser.parse_args() # Open output file and read some attributes file = args.outputfile f = h5py.File(file, 'r') dt = f.attrs['dt'] iterations = f.attrs['Iterations'] time = np.arange(0, dt * iterations, dt) time = time / 1e-9 path = '/tls/tl' + str(args.tln) + '/' Vinc = f[path + 'Vinc'][:] Vscat = f[path + 'Vscat'][:] Iscat = f[path + 'Iscat'][:] Vtotal = f[path +'Vtotal'][:] # Calculate magnitude of frequency spectra Vincp = np.abs(np.fft.fft(Vinc))**2 freqs = np.fft.fftfreq(Vincp.size, d=dt) Vscatp = np.abs(np.fft.fft(Vscat))**2 s11 = Vscatp / Vincp zin = np.zeros(iterations, dtype=np.complex) zin = np.abs(np.fft.fft(Vscat)) / np.abs(np.fft.fft(Iscat)) # Convert to decibels Vincp = 10 * np.log10(Vincp) Vscatp = 10 * np.log10(Vscatp) s11 = 10 * np.log10(s11) # Set plotting range to -60dB from maximum power pltrange = np.where((np.amax(Vincp) - Vincp) > 60)[0][0] + 1 pltrange = np.s_[0:pltrange] # Plot incident voltage fig1, ax = plt.subplots(num='Transmission line parameters', figsize=(20, 10), facecolor='w', edgecolor='w') gs1 = gridspec.GridSpec(2, 2, hspace=0.3) ax1 = plt.subplot(gs1[0, 0]) ax1.plot(time, Vinc, 'r', lw=2, label='Vinc') ax1.set_title('Incident voltage') ax1.set_xlabel('Time [ns]') ax1.set_ylabel('Voltage [V]') ax1.set_xlim([0, np.amax(time)]) ax1.grid() # Plot frequency spectra of incident voltage ax2 = plt.subplot(gs1[0, 1]) markerline, stemlines, baseline = ax2.stem(freqs[pltrange]/1e9, Vincp[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'r') plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') ax2.plot(freqs[pltrange]/1e9, Vincp[pltrange], 'r', lw=2) ax2.set_title('Incident voltage') ax2.set_xlabel('Frequency [GHz]') ax2.set_ylabel('Power [dB]') ax2.grid() # Plot scattered (field) voltage ax3 = plt.subplot(gs1[1, 0]) ax3.plot(time, Vscat, 'r', lw=2, label='Vscat') ax3.set_title('Reflected voltage') ax3.set_xlabel('Time [ns]') ax3.set_ylabel('Voltage [V]') ax3.set_xlim([0, np.amax(time)]) ax3.grid() # Plot frequency spectra of scattered voltage ax4 = plt.subplot(gs1[1, 1]) markerline, stemlines, baseline = ax4.stem(freqs[pltrange]/1e9, Vscatp[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'r') plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') ax4.plot(freqs[pltrange]/1e9, Vscatp[pltrange], 'r', lw=2) ax4.set_title('Reflected voltage') ax4.set_xlabel('Frequency [GHz]') ax4.set_ylabel('Power [dB]') ax4.grid() # Plot frequency spectra of s11 fig2, ax = plt.subplots(num='Antenna parameters', figsize=(20, 10), facecolor='w', edgecolor='w') gs2 = gridspec.GridSpec(2, 2, hspace=0.3) ax5 = plt.subplot(gs2[0, 0]) markerline, stemlines, baseline = ax5.stem(freqs[pltrange]/1e9, s11[pltrange], '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'r') plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') ax5.plot(freqs[pltrange]/1e9, s11[pltrange], 'r', lw=2) ax5.set_title('s11 parameter') ax5.set_xlabel('Frequency [GHz]') ax5.set_ylabel('Power [dB]') ax5.grid() # Plot input resistance (real part of impedance) ax6 = plt.subplot(gs2[1, 0]) markerline, stemlines, baseline = ax6.stem(freqs[pltrange]/1e9, zin[pltrange].real, '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'r') plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') ax6.plot(freqs[pltrange]/1e9, zin[pltrange].real, 'r', lw=2) ax6.set_title('Input impedance') ax6.set_xlabel('Frequency [GHz]') ax6.set_ylabel('Resistance [Ohms]') ax6.set_ylim(bottom=0) ax6.grid() # Plot input reactance (imaginery part of impedance) ax7 = plt.subplot(gs2[1, 1]) markerline, stemlines, baseline = ax7.stem(freqs[pltrange]/1e9, zin[pltrange].imag, '-.') plt.setp(baseline, 'linewidth', 0) plt.setp(stemlines, 'color', 'r') plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r') ax7.plot(freqs[pltrange]/1e9, zin[pltrange].imag, 'r', lw=2) ax7.set_title('Input impedance') ax7.set_xlabel('Frequency [GHz]') ax7.set_ylabel('Reactance [Ohms]') ax7.set_ylim(bottom=0) ax7.grid() plt.show() fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1) #fig1.savefig(os.path.splitext(os.path.abspath(file))[0] + '_tl_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) #fig2.savefig(os.path.splitext(os.path.abspath(file))[0] + '_ant_params.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) f.close()