你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 04:56:51 +08:00
Added Taguchi optimisation module.
这个提交包含在:
二进制文件未显示。
二进制文件未显示。
212
user_libs/optimisations/taguchi.py
普通文件
212
user_libs/optimisations/taguchi.py
普通文件
@@ -0,0 +1,212 @@
|
||||
# Copyright (C) 2015, Craig Warren
|
||||
#
|
||||
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
|
||||
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
|
||||
#
|
||||
# Please use the attribution at http://dx.doi.org/10.1190/1.3548506
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
|
||||
import h5py
|
||||
|
||||
from gprMax.constants import floattype
|
||||
from gprMax.exceptions import CmdInputError
|
||||
|
||||
moduledirectory = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
|
||||
def select_OA(optparams):
|
||||
"""Load an orthogonal array (OA) from a numpy file. Configure and return OA and properties of OA.
|
||||
|
||||
Args:
|
||||
optparams (dict): Dictionary containing name of parameters to optimise and their initial ranges
|
||||
|
||||
Returns:
|
||||
OA (array): Orthogonal array
|
||||
N (int): Number of experiments in OA
|
||||
k (int): Number of parameters to optimise in OA
|
||||
s (int): Number of levels in OA
|
||||
t (int): Strength of OA
|
||||
"""
|
||||
|
||||
# Load the appropriate OA
|
||||
if len(optparams) <= 4:
|
||||
OA = np.load(os.path.join(moduledirectory, 'OA_9_4_3_2.npy'))
|
||||
elif len(optparams) <= 7:
|
||||
OA = np.load(os.path.join(moduledirectory, 'OA_18_7_3_2.npy'))
|
||||
else:
|
||||
raise CmdInputError('Too many parameters to optimise for the available orthogonal arrays (OA). Please find and load a bigger, suitable OA.')
|
||||
|
||||
# Cut down OA columns to number of parameters to optimise
|
||||
OA = OA[:, 0:len(optparams)]
|
||||
|
||||
# Number of experiments
|
||||
N = OA.shape[0]
|
||||
|
||||
# Number of parameters to optimise
|
||||
k = OA.shape[1]
|
||||
|
||||
# Number of levels
|
||||
s = 3
|
||||
|
||||
# Strength
|
||||
t = 2
|
||||
|
||||
return OA, N, k, s
|
||||
|
||||
|
||||
def calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, i):
|
||||
"""Calculate values for parameters to optimise for a set of experiments.
|
||||
|
||||
Args:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
optparamsinit (list): Initial ranges for parameters to optimise
|
||||
levels (array): Lower, central, and upper values for each parameter
|
||||
levelsopt (array): Optimal level for each parameter from previous iteration
|
||||
levelsdiff (array): Difference used to set values in levels array
|
||||
OA (array): Orthogonal array
|
||||
N (int): Number of experiments in OA
|
||||
k (int): Number of parameters to optimise in OA
|
||||
s (int): Number of levels in OA
|
||||
i (int): Iteration number
|
||||
|
||||
Returns:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
levels (array): Lower, central, and upper values for each parameter
|
||||
levelsdiff (array): Difference used to set values in levels array
|
||||
"""
|
||||
|
||||
# Reducing function used for calculating levels
|
||||
RR = np.exp(-(i/18)**2)
|
||||
|
||||
# Calculate levels for each parameter
|
||||
for p in range(0, k):
|
||||
# Central levels - for first iteration set to midpoint of initial range and don't use RR
|
||||
if i == 0:
|
||||
levels[1, p] = ((optparamsinit[p][1][1] - optparamsinit[p][1][0]) / 2) + optparamsinit[p][1][0]
|
||||
levelsdiff[p] = (optparamsinit[p][1][1] - optparamsinit[p][1][0]) / (s + 1)
|
||||
# Central levels - set to optimum from previous iteration
|
||||
else:
|
||||
levels[1, p] = levels[levelsopt[p], p]
|
||||
levelsdiff[p] = RR * levelsdiff[p]
|
||||
|
||||
# Lower levels set using central level and level differences values; and check they are not outwith initial ranges
|
||||
if levels[1, p] - levelsdiff[p] < optparamsinit[p][1][0]:
|
||||
levels[0, p] = optparamslist[p][1][0]
|
||||
else:
|
||||
levels[0, p] = levels[1, p] - levelsdiff[p]
|
||||
|
||||
# Upper levels set using central level and level differences values; and check they are not outwith initial ranges
|
||||
if levels[1, p] + levelsdiff[p] > optparamsinit[p][1][1]:
|
||||
levels[2, p] = optparamslist[p][1][1]
|
||||
else:
|
||||
levels[2, p] = levels[1, p] + levelsdiff[p]
|
||||
|
||||
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
|
||||
optparams = OrderedDict((key, list()) for key in optparams)
|
||||
p = 0
|
||||
for key, value in optparams.items():
|
||||
for exp in range(0, N):
|
||||
if OA[exp, p] == 0:
|
||||
optparams[key].append(levels[0, p])
|
||||
elif OA[exp, p] == 1:
|
||||
optparams[key].append(levels[1, p])
|
||||
elif OA[exp, p] == 2:
|
||||
optparams[key].append(levels[2, p])
|
||||
p += 1
|
||||
|
||||
return optparams, levels, levelsdiff
|
||||
|
||||
|
||||
|
||||
def calculate_optimal_levels(optparams, levels, levelsopt, fitness, OA, N, k):
|
||||
"""Calculate optimal levels from results of fitness metric by building a response table.
|
||||
|
||||
Args:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
levels (array): Lower, central, and upper values for each parameter
|
||||
levelsopt (array): Optimal level for each parameter from previous iteration
|
||||
fitness (array): Values from results of fitness metric
|
||||
OA (array): Orthogonal array
|
||||
N (int): Number of experiments in OA
|
||||
k (int): Number of parameters to optimise in OA
|
||||
|
||||
Returns:
|
||||
optparams (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
levelsopt (array): Optimal level for each parameter from previous iteration
|
||||
"""
|
||||
|
||||
# Build a table of responses based on the results of the fitness metric
|
||||
for p in range(0, k):
|
||||
responses = np.zeros(3, dtype=floattype)
|
||||
|
||||
cnt1 = 0
|
||||
cnt2 = 0
|
||||
cnt3 = 0
|
||||
|
||||
for exp in range(1, N):
|
||||
if OA[exp, p] == 0:
|
||||
responses[0] += fitness[exp]
|
||||
cnt1 += 1
|
||||
elif OA[exp, p] == 1:
|
||||
responses[1] += fitness[exp]
|
||||
cnt2 += 1
|
||||
elif OA[exp, p] == 2:
|
||||
responses[2] += fitness[exp]
|
||||
cnt3 += 1
|
||||
|
||||
responses[0] /= cnt1
|
||||
responses[1] /= cnt2
|
||||
responses[2] /= cnt3
|
||||
|
||||
# Calculate optimal level from table of responses
|
||||
tmp = np.where(responses == np.amax(responses))[0]
|
||||
|
||||
# If there is more than one level found use the first
|
||||
if len(tmp) > 1:
|
||||
tmp = tmp[0]
|
||||
|
||||
levelsopt[p] = tmp
|
||||
|
||||
# Update dictionary of parameters to optimise with lists of new values; clear dictionary first
|
||||
optparams = OrderedDict((key, list()) for key in optparams)
|
||||
p = 0
|
||||
for key, value in optparams.items():
|
||||
optparams[key].append(levels[levelsopt[p], p])
|
||||
p += 1
|
||||
|
||||
return optparams, levelsopt
|
||||
|
||||
|
||||
def fitness_max(filename, outputnames):
|
||||
"""Return the maximum value from specific outputs in a file.
|
||||
|
||||
Args:
|
||||
filename (dict): Ordered dictionary containing name of parameters to optimise and their values
|
||||
outputnames (list): Names (IDs) of outputs (rxs)
|
||||
|
||||
Returns:
|
||||
maxvalue (array): Maximum value(s) from specific outputs
|
||||
"""
|
||||
|
||||
maxvalue = np.zeros(len(outputnames), dtype=floattype)
|
||||
f = h5py.File(filename, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
|
||||
i = 0
|
||||
for rx in range(1, nrx + 1):
|
||||
tmp = f['/rxs/rx' + str(rx) + '/']
|
||||
if tmp.attrs['Name'] in outputnames:
|
||||
fieldname = list(tmp.keys())[0]
|
||||
maxvalue[i] = np.amax(tmp[fieldname])
|
||||
i += 1
|
||||
|
||||
return maxvalue
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户