Added beginnings of docs for Taguchi optimisation.

这个提交包含在:
Craig Warren
2016-05-03 16:00:22 +01:00
父节点 5a18bcab19
当前提交 f6ba35a5ee
共有 6 个文件被更改,包括 54 次插入4 次删除

二进制文件未显示。

之后

宽度:  |  高度:  |  大小: 92 KiB

查看文件

@@ -37,6 +37,7 @@ gprMax User Guide
:caption: User libraries
user_libs_antennas
user_libs_opt_taguchi
user_libs_austinman
.. toctree::

查看文件

@@ -25,6 +25,8 @@ References
.. [TUR1997] Turcotte, D. L. (1997). Fractals and chaos in geology and geophysics. Cambridge university press. (http://dx.doi.org/10.1017/cbo9781139174695)
.. [VIA2005] Vial, A., Grimault, A. S., Macías, D., Barchiesi, D., & de La Chapelle, M. L. (2005). Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Physical Review B, 71(8), 085416. (http://dx.doi.org/10.1103/physrevb.71.085416)
.. [WAR2011] Warren, C., & Giannopoulos, A. (2011). Creating finite-difference time-domain models of commercial ground-penetrating radar antennas using Taguchi’s optimization method. Geophysics, 76(2), G37-G47. (http://dx.doi.org/10.1190/1.3548506)
.. [WEN2007a] Weng, W. C., Yang, F., & Elsherbeni, A. (2007). Electromagnetics and antenna optimization using Taguchi’s method. Synthesis Lectures on Computational Electromagnetics, 2(1), 1-94.
.. [WEN2007b] Weng, W. C., Yang, F., & Elsherbeni, A. Z. (2007). Linear antenna array synthesis using Taguchi's method: A novel optimization technique in electromagnetics. Antennas and Propagation, IEEE Transactions on, 55(3), 723-730.
.. [WHI2009] Whittow, W. G., & Edwards, R. M. (2009). Effects of averaging procedures for electrical properties at the interface of dissimilar tissues in the human head with finite-difference time-domain modelling. Science, Measurement & Technology, IET, 3(1), 51-58.
.. [YEE1966] Yee, K. S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag, 14(3), 302-307. (http://dx.doi.org/10.1109/TAP.1966.1138693)

查看文件

@@ -1,9 +1,8 @@
User libraries is a sub-package where useful Python modules contributed by users are stored.
***********
antennas.py
***********
********
Antennas
********
.. code-block:: python

查看文件

@@ -1,5 +1,7 @@
User libraries is a sub-package where useful Python modules contributed by users are stored.
**UNDER CONSTRUCTION**
***********************
AustinMan & AustinWoman
***********************

查看文件

@@ -0,0 +1,46 @@
User libraries is a sub-package where useful Python modules contributed by users are stored.
**UNDER CONSTRUCTION**
**********************
Optimisation - Taguchi
**********************
.. code-block:: python
# Copyright (C) 2015-2016, Craig Warren
#
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
#
# Please use the attribution at http://dx.doi.org/10.1190/1.3548506
The module features an optimisation technique based on Taguchi's method. It allows the user to define parameters in an input file and optimise their values based on a user-defined fitness function.
Taguchi's method
================
Taguchi's method is based on the concept of Orthogonal Array (OA) and has the following advantages:
* Simple to implement
* Effective in reduction of experiments
* Fast convergence speed
* Global optimum results
* Independence from initial values of optimisation parameters
Details of Taguchi's method in the context of electromagnetics can be found in [WEN2007a]_ and [WEN2007b]_. The process by which Taguchi's method optimises parameters is illustrated in the following figure.
.. figure:: images/taguchi_process.png
:width: 300 px
Process associated with Taguchi's method.
Implementation
==============
The module will select from 2 pre-built OAs (http://neilsloane.com/oadir/) depending on the number of parameters to optimise. Currently, up to 7 independent parameters can be optimised, although a method to construct OAs of any size is under testing.
Fitness functions
-----------------
A fitness function is required