Added error check for when model could use more RAM than available.

这个提交包含在:
Craig Warren
2016-08-04 15:59:34 +01:00
父节点 3c03ebbd36
当前提交 f00cf43d14

查看文件

@@ -19,11 +19,12 @@
import os
import psutil
import decimal as d
import sys
import numpy as np
from gprMax.constants import c, floattype
from gprMax.exceptions import CmdInputError
from gprMax.exceptions import CmdInputError, GeneralError
from gprMax.utilities import round_value, human_size
from gprMax.waveforms import Waveform
@@ -112,33 +113,38 @@ def process_singlecmds(singlecmds, G):
raise CmdInputError(cmd + ' requires at least one cell in every dimension')
if G.messages:
print('Domain size: {:g} x {:g} x {:g}m ({:d} x {:d} x {:d} = {:g} cells)'.format(tmp[0], tmp[1], tmp[2], G.nx, G.ny, G.nz, (G.nx * G.ny * G.nz)))
# Guesstimate at memory usage
mem = (((G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 13 * np.dtype(floattype).itemsize + (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 18) * 1.1) + 30e6
print('Memory (RAM) usage: ~{} required, {} available'.format(human_size(mem), human_size(psutil.virtual_memory().total)))
# Estimate memory (RAM) usage
if G.messages:
# Currently this is a pretty loose estimate but seems to match reasonably with memory usage reported when model completes.
memestimate = (((G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 13 * np.dtype(floattype).itemsize + (G.nx + 1) * (G.ny + 1) * (G.nz + 1) * 18) * 1.1) + 30e6
print('Memory (RAM) usage: ~{} required, {} available'.format(human_size(memestimate), human_size(psutil.virtual_memory().total)))
if memestimate > psutil.virtual_memory().total:
raise GeneralError('Estimated memory (RAM) required ~{} exceeds {} available!\n'.format(human_size(memestimate), human_size(psutil.virtual_memory().total)))
# Time step CFL limit (use either 2D or 3D) and default PML thickness
if G.nx == 1:
G.dt = 1 / (c * np.sqrt((1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
G.dtlimit = '2D'
gridtype = '2D'
G.pmlthickness = (0, G.pmlthickness, G.pmlthickness, 0, G.pmlthickness, G.pmlthickness)
elif G.ny == 1:
G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dz) * (1 / G.dz)))
G.dtlimit = '2D'
gridtype = '2D'
G.pmlthickness = (G.pmlthickness, 0, G.pmlthickness, G.pmlthickness, 0, G.pmlthickness)
elif G.nz == 1:
G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy)))
G.dtlimit = '2D'
gridtype = '2D'
G.pmlthickness = (G.pmlthickness, G.pmlthickness, 0, G.pmlthickness, G.pmlthickness, 0)
else:
G.dt = 1 / (c * np.sqrt((1 / G.dx) * (1 / G.dx) + (1 / G.dy) * (1 / G.dy) + (1 / G.dz) * (1 / G.dz)))
G.dtlimit = '3D'
gridtype = '3D'
G.pmlthickness = (G.pmlthickness, G.pmlthickness, G.pmlthickness, G.pmlthickness, G.pmlthickness, G.pmlthickness)
# Round down time step to nearest float with precision one less than hardware maximum. Avoids inadvertently exceeding the CFL due to binary representation of floating point number.
G.dt = round_value(G.dt, decimalplaces=d.getcontext().prec - 1)
if G.messages:
print('Time step (at {} CFL limit): {:g} secs'.format(G.dtlimit, G.dt))
print('Time step (at {} CFL limit): {:g} secs'.format(gridtype, G.dt))
# Time step stability factor
cmd = '#time_step_stability_factor'