你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 04:56:51 +08:00
Corrected regression of saving optimisation parameters history. Added more information when the optimisation reaches its stopping criteria.
这个提交包含在:
@@ -107,6 +107,10 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
|
||||
# Calculate optimal levels from fitness values by building a response table; update dictionary of parameters with optimal values
|
||||
optparams, levelsopt = calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k)
|
||||
|
||||
# Update dictionary with history of parameters with optimal values
|
||||
for key, value in optparams.items():
|
||||
optparamshist[key].append(value)
|
||||
|
||||
# Run a confirmation experiment with optimal values
|
||||
numbermodelruns = 1
|
||||
usernamespace['number_model_runs'] = numbermodelruns
|
||||
@@ -124,7 +128,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
|
||||
|
||||
# Stop optimisation if stopping criterion has been reached
|
||||
if fitnessvalueshist[iteration - 1] > fitness['stop']:
|
||||
print('\nTaguchi optimisation stopped as fitness criteria reached')
|
||||
print('\nTaguchi optimisation stopped as fitness criteria reached: {:g} > {:g}'.format(fitnessvalueshist[iteration - 1], fitness['stop']))
|
||||
break
|
||||
|
||||
# Stop optimisation if successive fitness values are within a percentage threshold
|
||||
|
在新工单中引用
屏蔽一个用户