你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 15:10:13 +08:00
Complete seperating out grid classes
这个提交包含在:
524
gprMax/grid.py
524
gprMax/grid.py
@@ -1,524 +0,0 @@
|
||||
# Copyright (C) 2015-2024: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import decimal as d
|
||||
from collections import OrderedDict
|
||||
from importlib import import_module
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gprMax.config as config
|
||||
|
||||
from .pml import PML
|
||||
from .utilities.utilities import fft_power, round_value
|
||||
|
||||
np.seterr(invalid="raise")
|
||||
|
||||
|
||||
class FDTDGrid:
|
||||
"""Holds attributes associated with entire grid. A convenient way for
|
||||
accessing regularly used parameters.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.title = ""
|
||||
self.name = "main_grid"
|
||||
self.mem_use = 0
|
||||
|
||||
self.nx = 0
|
||||
self.ny = 0
|
||||
self.nz = 0
|
||||
self.dx = 0
|
||||
self.dy = 0
|
||||
self.dz = 0
|
||||
self.dt = 0
|
||||
self.dt_mod = None # Time step stability factor
|
||||
self.iteration = 0 # Current iteration number
|
||||
self.iterations = 0 # Total number of iterations
|
||||
self.timewindow = 0
|
||||
|
||||
# PML parameters - set some defaults to use if not user provided
|
||||
self.pmls = {}
|
||||
self.pmls["formulation"] = "HORIPML"
|
||||
self.pmls["cfs"] = []
|
||||
self.pmls["slabs"] = []
|
||||
# Ordered dictionary required so *updating* the PMLs always follows the
|
||||
# same order (the order for *building* PMLs does not matter). The order
|
||||
# itself does not matter, however, if must be the same from model to
|
||||
# model otherwise the numerical precision from adding the PML
|
||||
# corrections will be different.
|
||||
self.pmls["thickness"] = OrderedDict((key, 10) for key in PML.boundaryIDs)
|
||||
|
||||
self.materials = []
|
||||
self.mixingmodels = []
|
||||
self.averagevolumeobjects = True
|
||||
self.fractalvolumes = []
|
||||
self.geometryviews = []
|
||||
self.geometryobjectswrite = []
|
||||
self.waveforms = []
|
||||
self.voltagesources = []
|
||||
self.hertziandipoles = []
|
||||
self.magneticdipoles = []
|
||||
self.transmissionlines = []
|
||||
self.rxs = []
|
||||
self.srcsteps = [0, 0, 0]
|
||||
self.rxsteps = [0, 0, 0]
|
||||
self.snapshots = []
|
||||
self.subgrids = []
|
||||
|
||||
def within_bounds(self, p):
|
||||
if p[0] < 0 or p[0] > self.nx:
|
||||
raise ValueError("x")
|
||||
if p[1] < 0 or p[1] > self.ny:
|
||||
raise ValueError("y")
|
||||
if p[2] < 0 or p[2] > self.nz:
|
||||
raise ValueError("z")
|
||||
|
||||
def discretise_point(self, p):
|
||||
x = round_value(float(p[0]) / self.dx)
|
||||
y = round_value(float(p[1]) / self.dy)
|
||||
z = round_value(float(p[2]) / self.dz)
|
||||
return (x, y, z)
|
||||
|
||||
def round_to_grid(self, p):
|
||||
p = self.discretise_point(p)
|
||||
p_r = (p[0] * self.dx, p[1] * self.dy, p[2] * self.dz)
|
||||
return p_r
|
||||
|
||||
def within_pml(self, p):
|
||||
if (
|
||||
p[0] < self.pmls["thickness"]["x0"]
|
||||
or p[0] > self.nx - self.pmls["thickness"]["xmax"]
|
||||
or p[1] < self.pmls["thickness"]["y0"]
|
||||
or p[1] > self.ny - self.pmls["thickness"]["ymax"]
|
||||
or p[2] < self.pmls["thickness"]["z0"]
|
||||
or p[2] > self.nz - self.pmls["thickness"]["zmax"]
|
||||
):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def initialise_geometry_arrays(self):
|
||||
"""Initialise an array for volumetric material IDs (solid);
|
||||
boolean arrays for specifying whether materials can have dielectric
|
||||
smoothing (rigid); and an array for cell edge IDs (ID).
|
||||
Solid and ID arrays are initialised to free_space (one);
|
||||
rigid arrays to allow dielectric smoothing (zero).
|
||||
"""
|
||||
self.solid = np.ones((self.nx, self.ny, self.nz), dtype=np.uint32)
|
||||
self.rigidE = np.zeros((12, self.nx, self.ny, self.nz), dtype=np.int8)
|
||||
self.rigidH = np.zeros((6, self.nx, self.ny, self.nz), dtype=np.int8)
|
||||
self.ID = np.ones((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
|
||||
self.IDlookup = {"Ex": 0, "Ey": 1, "Ez": 2, "Hx": 3, "Hy": 4, "Hz": 5}
|
||||
|
||||
def initialise_field_arrays(self):
|
||||
"""Initialise arrays for the electric and magnetic field components."""
|
||||
self.Ex = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Ey = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Ez = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hx = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hy = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hz = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
|
||||
def initialise_std_update_coeff_arrays(self):
|
||||
"""Initialise arrays for storing update coefficients."""
|
||||
self.updatecoeffsE = np.zeros((len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.updatecoeffsH = np.zeros((len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
|
||||
def initialise_dispersive_arrays(self):
|
||||
"""Initialise field arrays when there are dispersive materials present."""
|
||||
self.Tx = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
self.Ty = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
self.Tz = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
|
||||
def initialise_dispersive_update_coeff_array(self):
|
||||
"""Initialise array for storing update coefficients when there are dispersive
|
||||
materials present.
|
||||
"""
|
||||
self.updatecoeffsdispersive = np.zeros(
|
||||
(len(self.materials), 3 * config.get_model_config().materials["maxpoles"]),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
|
||||
def reset_fields(self):
|
||||
"""Clear arrays for field components and PMLs."""
|
||||
# Clear arrays for field components
|
||||
self.initialise_field_arrays()
|
||||
if config.get_model_config().materials["maxpoles"] > 0:
|
||||
self.initialise_dispersive_arrays()
|
||||
|
||||
# Clear arrays for fields in PML
|
||||
for pml in self.pmls["slabs"]:
|
||||
pml.initialise_field_arrays()
|
||||
|
||||
def mem_est_basic(self):
|
||||
"""Estimates the amount of memory (RAM) required for grid arrays.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
solidarray = self.nx * self.ny * self.nz * np.dtype(np.uint32).itemsize
|
||||
|
||||
# 12 x rigidE array components + 6 x rigidH array components
|
||||
rigidarrays = (12 + 6) * self.nx * self.ny * self.nz * np.dtype(np.int8).itemsize
|
||||
|
||||
# 6 x field arrays + 6 x ID arrays
|
||||
fieldarrays = (
|
||||
(6 + 6)
|
||||
* (self.nx + 1)
|
||||
* (self.ny + 1)
|
||||
* (self.nz + 1)
|
||||
* np.dtype(config.sim_config.dtypes["float_or_double"]).itemsize
|
||||
)
|
||||
|
||||
# PML arrays
|
||||
pmlarrays = 0
|
||||
for k, v in self.pmls["thickness"].items():
|
||||
if v > 0:
|
||||
if "x" in k:
|
||||
pmlarrays += (v + 1) * self.ny * (self.nz + 1)
|
||||
pmlarrays += (v + 1) * (self.ny + 1) * self.nz
|
||||
pmlarrays += v * self.ny * (self.nz + 1)
|
||||
pmlarrays += v * (self.ny + 1) * self.nz
|
||||
elif "y" in k:
|
||||
pmlarrays += self.nx * (v + 1) * (self.nz + 1)
|
||||
pmlarrays += (self.nx + 1) * (v + 1) * self.nz
|
||||
pmlarrays += (self.nx + 1) * v * self.nz
|
||||
pmlarrays += self.nx * v * (self.nz + 1)
|
||||
elif "z" in k:
|
||||
pmlarrays += self.nx * (self.ny + 1) * (v + 1)
|
||||
pmlarrays += (self.nx + 1) * self.ny * (v + 1)
|
||||
pmlarrays += (self.nx + 1) * self.ny * v
|
||||
pmlarrays += self.nx * (self.ny + 1) * v
|
||||
|
||||
mem_use = int(fieldarrays + solidarray + rigidarrays + pmlarrays)
|
||||
|
||||
return mem_use
|
||||
|
||||
def mem_est_dispersive(self):
|
||||
"""Estimates the amount of memory (RAM) required for dispersive grid arrays.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
mem_use = int(
|
||||
3
|
||||
* config.get_model_config().materials["maxpoles"]
|
||||
* (self.nx + 1)
|
||||
* (self.ny + 1)
|
||||
* (self.nz + 1)
|
||||
* np.dtype(config.get_model_config().materials["dispersivedtype"]).itemsize
|
||||
)
|
||||
return mem_use
|
||||
|
||||
def mem_est_fractals(self):
|
||||
"""Estimates the amount of memory (RAM) required to build any objects
|
||||
which use the FractalVolume/FractalSurface classes.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
mem_use = 0
|
||||
|
||||
for vol in self.fractalvolumes:
|
||||
mem_use += vol.nx * vol.ny * vol.nz * vol.dtype.itemsize
|
||||
for surface in vol.fractalsurfaces:
|
||||
surfacedims = surface.get_surface_dims()
|
||||
mem_use += surfacedims[0] * surfacedims[1] * surface.dtype.itemsize
|
||||
|
||||
return mem_use
|
||||
|
||||
def tmx(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMx mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ey & Ez components
|
||||
self.ID[1, 0, :, :] = 0
|
||||
self.ID[1, 1, :, :] = 0
|
||||
self.ID[2, 0, :, :] = 0
|
||||
self.ID[2, 1, :, :] = 0
|
||||
|
||||
def tmy(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMy mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ex & Ez components
|
||||
self.ID[0, :, 0, :] = 0
|
||||
self.ID[0, :, 1, :] = 0
|
||||
self.ID[2, :, 0, :] = 0
|
||||
self.ID[2, :, 1, :] = 0
|
||||
|
||||
def tmz(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMz mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ex & Ey components
|
||||
self.ID[0, :, :, 0] = 0
|
||||
self.ID[0, :, :, 1] = 0
|
||||
self.ID[1, :, :, 0] = 0
|
||||
self.ID[1, :, :, 1] = 0
|
||||
|
||||
def calculate_dt(self):
|
||||
"""Calculate time step at the CFL limit."""
|
||||
if config.get_model_config().mode == "2D TMx":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dy**2) + (1 / self.dz**2)))
|
||||
elif config.get_model_config().mode == "2D TMy":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dz**2)))
|
||||
elif config.get_model_config().mode == "2D TMz":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2)))
|
||||
else:
|
||||
self.dt = 1 / (
|
||||
config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2) + (1 / self.dz**2))
|
||||
)
|
||||
|
||||
# Round down time step to nearest float with precision one less than
|
||||
# hardware maximum. Avoids inadvertently exceeding the CFL due to
|
||||
# binary representation of floating point number.
|
||||
self.dt = round_value(self.dt, decimalplaces=d.getcontext().prec - 1)
|
||||
|
||||
|
||||
class CUDAGrid(FDTDGrid):
|
||||
"""Additional grid methods for solving on GPU using CUDA."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.gpuarray = import_module("pycuda.gpuarray")
|
||||
|
||||
# Threads per block - used for main electric/magnetic field updates
|
||||
self.tpb = (128, 1, 1)
|
||||
# Blocks per grid - used for main electric/magnetic field updates
|
||||
self.bpg = None
|
||||
|
||||
def set_blocks_per_grid(self):
|
||||
"""Set the blocks per grid size used for updating the electric and
|
||||
magnetic field arrays on a GPU.
|
||||
"""
|
||||
|
||||
self.bpg = (int(np.ceil(((self.nx + 1) * (self.ny + 1) * (self.nz + 1)) / self.tpb[0])), 1, 1)
|
||||
|
||||
def htod_geometry_arrays(self):
|
||||
"""Initialise an array for cell edge IDs (ID) on compute device."""
|
||||
|
||||
self.ID_dev = self.gpuarray.to_gpu(self.ID)
|
||||
|
||||
def htod_field_arrays(self):
|
||||
"""Initialise field arrays on compute device."""
|
||||
|
||||
self.Ex_dev = self.gpuarray.to_gpu(self.Ex)
|
||||
self.Ey_dev = self.gpuarray.to_gpu(self.Ey)
|
||||
self.Ez_dev = self.gpuarray.to_gpu(self.Ez)
|
||||
self.Hx_dev = self.gpuarray.to_gpu(self.Hx)
|
||||
self.Hy_dev = self.gpuarray.to_gpu(self.Hy)
|
||||
self.Hz_dev = self.gpuarray.to_gpu(self.Hz)
|
||||
|
||||
def htod_dispersive_arrays(self):
|
||||
"""Initialise dispersive material coefficient arrays on compute device."""
|
||||
|
||||
self.updatecoeffsdispersive_dev = self.gpuarray.to_gpu(self.updatecoeffsdispersive)
|
||||
self.Tx_dev = self.gpuarray.to_gpu(self.Tx)
|
||||
self.Ty_dev = self.gpuarray.to_gpu(self.Ty)
|
||||
self.Tz_dev = self.gpuarray.to_gpu(self.Tz)
|
||||
|
||||
|
||||
class OpenCLGrid(FDTDGrid):
|
||||
"""Additional grid methods for solving on compute device using OpenCL."""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.clarray = import_module("pyopencl.array")
|
||||
|
||||
def htod_geometry_arrays(self, queue):
|
||||
"""Initialise an array for cell edge IDs (ID) on compute device.
|
||||
|
||||
Args:
|
||||
queue: pyopencl queue.
|
||||
"""
|
||||
|
||||
self.ID_dev = self.clarray.to_device(queue, self.ID)
|
||||
|
||||
def htod_field_arrays(self, queue):
|
||||
"""Initialise field arrays on compute device.
|
||||
|
||||
Args:
|
||||
queue: pyopencl queue.
|
||||
"""
|
||||
|
||||
self.Ex_dev = self.clarray.to_device(queue, self.Ex)
|
||||
self.Ey_dev = self.clarray.to_device(queue, self.Ey)
|
||||
self.Ez_dev = self.clarray.to_device(queue, self.Ez)
|
||||
self.Hx_dev = self.clarray.to_device(queue, self.Hx)
|
||||
self.Hy_dev = self.clarray.to_device(queue, self.Hy)
|
||||
self.Hz_dev = self.clarray.to_device(queue, self.Hz)
|
||||
|
||||
def htod_dispersive_arrays(self, queue):
|
||||
"""Initialise dispersive material coefficient arrays on compute device.
|
||||
|
||||
Args:
|
||||
queue: pyopencl queue.
|
||||
"""
|
||||
|
||||
self.updatecoeffsdispersive_dev = self.clarray.to_device(queue, self.updatecoeffsdispersive)
|
||||
# self.updatecoeffsdispersive_dev = self.clarray.to_device(queue, np.ones((95,95,95), dtype=np.float32))
|
||||
self.Tx_dev = self.clarray.to_device(queue, self.Tx)
|
||||
self.Ty_dev = self.clarray.to_device(queue, self.Ty)
|
||||
self.Tz_dev = self.clarray.to_device(queue, self.Tz)
|
||||
|
||||
|
||||
def dispersion_analysis(G):
|
||||
"""Analysis of numerical dispersion (Taflove et al, 2005, p112) -
|
||||
worse case of maximum frequency and minimum wavelength
|
||||
|
||||
Args:
|
||||
G: FDTDGrid class describing a grid in a model.
|
||||
|
||||
Returns:
|
||||
results: dict of results from dispersion analysis.
|
||||
"""
|
||||
|
||||
# deltavp: physical phase velocity error (percentage)
|
||||
# N: grid sampling density
|
||||
# material: material with maximum permittivity
|
||||
# maxfreq: maximum significant frequency
|
||||
# error: error message
|
||||
results = {"deltavp": None, "N": None, "material": None, "maxfreq": [], "error": ""}
|
||||
|
||||
# Find maximum significant frequency
|
||||
if G.waveforms:
|
||||
for waveform in G.waveforms:
|
||||
if waveform.type in ["sine", "contsine"]:
|
||||
results["maxfreq"].append(4 * waveform.freq)
|
||||
|
||||
elif waveform.type == "impulse":
|
||||
results["error"] = "impulse waveform used."
|
||||
|
||||
elif waveform.type == "user":
|
||||
results["error"] = "user waveform detected."
|
||||
|
||||
else:
|
||||
# Time to analyse waveform - 4*pulse_width as using entire
|
||||
# time window can result in demanding FFT
|
||||
waveform.calculate_coefficients()
|
||||
iterations = round_value(4 * waveform.chi / G.dt)
|
||||
iterations = min(iterations, G.iterations)
|
||||
waveformvalues = np.zeros(G.iterations)
|
||||
for iteration in range(G.iterations):
|
||||
waveformvalues[iteration] = waveform.calculate_value(iteration * G.dt, G.dt)
|
||||
|
||||
# Ensure source waveform is not being overly truncated before attempting any FFT
|
||||
if np.abs(waveformvalues[-1]) < np.abs(np.amax(waveformvalues)) / 100:
|
||||
# FFT
|
||||
freqs, power = fft_power(waveformvalues, G.dt)
|
||||
# Get frequency for max power
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
|
||||
# Set maximum frequency to a threshold drop from maximum power, ignoring DC value
|
||||
try:
|
||||
freqthres = (
|
||||
np.where(
|
||||
power[freqmaxpower:] < -config.get_model_config().numdispersion["highestfreqthres"]
|
||||
)[0][0]
|
||||
+ freqmaxpower
|
||||
)
|
||||
results["maxfreq"].append(freqs[freqthres])
|
||||
except ValueError:
|
||||
results["error"] = (
|
||||
"unable to calculate maximum power "
|
||||
+ "from waveform, most likely due to "
|
||||
+ "undersampling."
|
||||
)
|
||||
|
||||
# Ignore case where someone is using a waveform with zero amplitude, i.e. on a receiver
|
||||
elif waveform.amp == 0:
|
||||
pass
|
||||
|
||||
# If waveform is truncated don't do any further analysis
|
||||
else:
|
||||
results["error"] = (
|
||||
"waveform does not fit within specified " + "time window and is therefore being truncated."
|
||||
)
|
||||
else:
|
||||
results["error"] = "no waveform detected."
|
||||
|
||||
if results["maxfreq"]:
|
||||
results["maxfreq"] = max(results["maxfreq"])
|
||||
|
||||
# Find minimum wavelength (material with maximum permittivity)
|
||||
maxer = 0
|
||||
matmaxer = ""
|
||||
for x in G.materials:
|
||||
if x.se != float("inf"):
|
||||
er = x.er
|
||||
# If there are dispersive materials calculate the complex
|
||||
# relative permittivity at maximum frequency and take the real part
|
||||
if x.__class__.__name__ == "DispersiveMaterial":
|
||||
er = x.calculate_er(results["maxfreq"])
|
||||
er = er.real
|
||||
if er > maxer:
|
||||
maxer = er
|
||||
matmaxer = x.ID
|
||||
results["material"] = next(x for x in G.materials if x.ID == matmaxer)
|
||||
|
||||
# Minimum velocity
|
||||
minvelocity = config.c / np.sqrt(maxer)
|
||||
|
||||
# Minimum wavelength
|
||||
minwavelength = minvelocity / results["maxfreq"]
|
||||
|
||||
# Maximum spatial step
|
||||
if "3D" in config.get_model_config().mode:
|
||||
delta = max(G.dx, G.dy, G.dz)
|
||||
elif "2D" in config.get_model_config().mode:
|
||||
if G.nx == 1:
|
||||
delta = max(G.dy, G.dz)
|
||||
elif G.ny == 1:
|
||||
delta = max(G.dx, G.dz)
|
||||
elif G.nz == 1:
|
||||
delta = max(G.dx, G.dy)
|
||||
|
||||
# Courant stability factor
|
||||
S = (config.c * G.dt) / delta
|
||||
|
||||
# Grid sampling density
|
||||
results["N"] = minwavelength / delta
|
||||
|
||||
# Check grid sampling will result in physical wave propagation
|
||||
if int(np.floor(results["N"])) >= config.get_model_config().numdispersion["mingridsampling"]:
|
||||
# Numerical phase velocity
|
||||
vp = np.pi / (results["N"] * np.arcsin((1 / S) * np.sin((np.pi * S) / results["N"])))
|
||||
|
||||
# Physical phase velocity error (percentage)
|
||||
results["deltavp"] = (((vp * config.c) - config.c) / config.c) * 100
|
||||
|
||||
# Store rounded down value of grid sampling density
|
||||
results["N"] = int(np.floor(results["N"]))
|
||||
|
||||
return results
|
@@ -1,3 +1,21 @@
|
||||
# Copyright (C) 2015-2024: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
from importlib import import_module
|
||||
|
||||
import numpy as np
|
||||
|
@@ -1,282 +1,431 @@
|
||||
import decimal
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gprMax import config
|
||||
from gprMax.pml import PML
|
||||
from gprMax.utilities.utilities import round_value
|
||||
|
||||
|
||||
class FDTDGrid:
|
||||
"""Holds attributes associated with entire grid. A convenient way for
|
||||
accessing regularly used parameters.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.title = ""
|
||||
self.name = "main_grid"
|
||||
self.mem_use = 0
|
||||
|
||||
self.nx = 0
|
||||
self.ny = 0
|
||||
self.nz = 0
|
||||
self.dx = 0
|
||||
self.dy = 0
|
||||
self.dz = 0
|
||||
self.dt = 0
|
||||
self.dt_mod = None # Time step stability factor
|
||||
self.iteration = 0 # Current iteration number
|
||||
self.iterations = 0 # Total number of iterations
|
||||
self.timewindow = 0
|
||||
|
||||
# PML parameters - set some defaults to use if not user provided
|
||||
self.pmls = {}
|
||||
self.pmls["formulation"] = "HORIPML"
|
||||
self.pmls["cfs"] = []
|
||||
self.pmls["slabs"] = []
|
||||
# Ordered dictionary required so *updating* the PMLs always follows the
|
||||
# same order (the order for *building* PMLs does not matter). The order
|
||||
# itself does not matter, however, if must be the same from model to
|
||||
# model otherwise the numerical precision from adding the PML
|
||||
# corrections will be different.
|
||||
self.pmls["thickness"] = OrderedDict((key, 10) for key in PML.boundaryIDs)
|
||||
|
||||
self.materials = []
|
||||
self.mixingmodels = []
|
||||
self.averagevolumeobjects = True
|
||||
self.fractalvolumes = []
|
||||
self.geometryviews = []
|
||||
self.geometryobjectswrite = []
|
||||
self.waveforms = []
|
||||
self.voltagesources = []
|
||||
self.hertziandipoles = []
|
||||
self.magneticdipoles = []
|
||||
self.transmissionlines = []
|
||||
self.rxs = []
|
||||
self.srcsteps = [0, 0, 0]
|
||||
self.rxsteps = [0, 0, 0]
|
||||
self.snapshots = []
|
||||
self.subgrids = []
|
||||
|
||||
def within_bounds(self, p):
|
||||
if p[0] < 0 or p[0] > self.nx:
|
||||
raise ValueError("x")
|
||||
if p[1] < 0 or p[1] > self.ny:
|
||||
raise ValueError("y")
|
||||
if p[2] < 0 or p[2] > self.nz:
|
||||
raise ValueError("z")
|
||||
|
||||
def discretise_point(self, p):
|
||||
x = round_value(float(p[0]) / self.dx)
|
||||
y = round_value(float(p[1]) / self.dy)
|
||||
z = round_value(float(p[2]) / self.dz)
|
||||
return (x, y, z)
|
||||
|
||||
def round_to_grid(self, p):
|
||||
p = self.discretise_point(p)
|
||||
p_r = (p[0] * self.dx, p[1] * self.dy, p[2] * self.dz)
|
||||
return p_r
|
||||
|
||||
def within_pml(self, p):
|
||||
if (
|
||||
p[0] < self.pmls["thickness"]["x0"]
|
||||
or p[0] > self.nx - self.pmls["thickness"]["xmax"]
|
||||
or p[1] < self.pmls["thickness"]["y0"]
|
||||
or p[1] > self.ny - self.pmls["thickness"]["ymax"]
|
||||
or p[2] < self.pmls["thickness"]["z0"]
|
||||
or p[2] > self.nz - self.pmls["thickness"]["zmax"]
|
||||
):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def initialise_geometry_arrays(self):
|
||||
"""Initialise an array for volumetric material IDs (solid);
|
||||
boolean arrays for specifying whether materials can have dielectric
|
||||
smoothing (rigid); and an array for cell edge IDs (ID).
|
||||
Solid and ID arrays are initialised to free_space (one);
|
||||
rigid arrays to allow dielectric smoothing (zero).
|
||||
"""
|
||||
self.solid = np.ones((self.nx, self.ny, self.nz), dtype=np.uint32)
|
||||
self.rigidE = np.zeros((12, self.nx, self.ny, self.nz), dtype=np.int8)
|
||||
self.rigidH = np.zeros((6, self.nx, self.ny, self.nz), dtype=np.int8)
|
||||
self.ID = np.ones((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
|
||||
self.IDlookup = {"Ex": 0, "Ey": 1, "Ez": 2, "Hx": 3, "Hy": 4, "Hz": 5}
|
||||
|
||||
def initialise_field_arrays(self):
|
||||
"""Initialise arrays for the electric and magnetic field components."""
|
||||
self.Ex = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Ey = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Ez = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hx = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hy = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hz = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
|
||||
def initialise_std_update_coeff_arrays(self):
|
||||
"""Initialise arrays for storing update coefficients."""
|
||||
self.updatecoeffsE = np.zeros((len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.updatecoeffsH = np.zeros((len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
|
||||
def initialise_dispersive_arrays(self):
|
||||
"""Initialise field arrays when there are dispersive materials present."""
|
||||
self.Tx = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
self.Ty = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
self.Tz = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
|
||||
def initialise_dispersive_update_coeff_array(self):
|
||||
"""Initialise array for storing update coefficients when there are dispersive
|
||||
materials present.
|
||||
"""
|
||||
self.updatecoeffsdispersive = np.zeros(
|
||||
(len(self.materials), 3 * config.get_model_config().materials["maxpoles"]),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
|
||||
def reset_fields(self):
|
||||
"""Clear arrays for field components and PMLs."""
|
||||
# Clear arrays for field components
|
||||
self.initialise_field_arrays()
|
||||
if config.get_model_config().materials["maxpoles"] > 0:
|
||||
self.initialise_dispersive_arrays()
|
||||
|
||||
# Clear arrays for fields in PML
|
||||
for pml in self.pmls["slabs"]:
|
||||
pml.initialise_field_arrays()
|
||||
|
||||
def mem_est_basic(self):
|
||||
"""Estimates the amount of memory (RAM) required for grid arrays.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
solidarray = self.nx * self.ny * self.nz * np.dtype(np.uint32).itemsize
|
||||
|
||||
# 12 x rigidE array components + 6 x rigidH array components
|
||||
rigidarrays = (12 + 6) * self.nx * self.ny * self.nz * np.dtype(np.int8).itemsize
|
||||
|
||||
# 6 x field arrays + 6 x ID arrays
|
||||
fieldarrays = (
|
||||
(6 + 6)
|
||||
* (self.nx + 1)
|
||||
* (self.ny + 1)
|
||||
* (self.nz + 1)
|
||||
* np.dtype(config.sim_config.dtypes["float_or_double"]).itemsize
|
||||
)
|
||||
|
||||
# PML arrays
|
||||
pmlarrays = 0
|
||||
for k, v in self.pmls["thickness"].items():
|
||||
if v > 0:
|
||||
if "x" in k:
|
||||
pmlarrays += (v + 1) * self.ny * (self.nz + 1)
|
||||
pmlarrays += (v + 1) * (self.ny + 1) * self.nz
|
||||
pmlarrays += v * self.ny * (self.nz + 1)
|
||||
pmlarrays += v * (self.ny + 1) * self.nz
|
||||
elif "y" in k:
|
||||
pmlarrays += self.nx * (v + 1) * (self.nz + 1)
|
||||
pmlarrays += (self.nx + 1) * (v + 1) * self.nz
|
||||
pmlarrays += (self.nx + 1) * v * self.nz
|
||||
pmlarrays += self.nx * v * (self.nz + 1)
|
||||
elif "z" in k:
|
||||
pmlarrays += self.nx * (self.ny + 1) * (v + 1)
|
||||
pmlarrays += (self.nx + 1) * self.ny * (v + 1)
|
||||
pmlarrays += (self.nx + 1) * self.ny * v
|
||||
pmlarrays += self.nx * (self.ny + 1) * v
|
||||
|
||||
mem_use = int(fieldarrays + solidarray + rigidarrays + pmlarrays)
|
||||
|
||||
return mem_use
|
||||
|
||||
def mem_est_dispersive(self):
|
||||
"""Estimates the amount of memory (RAM) required for dispersive grid arrays.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
mem_use = int(
|
||||
3
|
||||
* config.get_model_config().materials["maxpoles"]
|
||||
* (self.nx + 1)
|
||||
* (self.ny + 1)
|
||||
* (self.nz + 1)
|
||||
* np.dtype(config.get_model_config().materials["dispersivedtype"]).itemsize
|
||||
)
|
||||
return mem_use
|
||||
|
||||
def mem_est_fractals(self):
|
||||
"""Estimates the amount of memory (RAM) required to build any objects
|
||||
which use the FractalVolume/FractalSurface classes.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
mem_use = 0
|
||||
|
||||
for vol in self.fractalvolumes:
|
||||
mem_use += vol.nx * vol.ny * vol.nz * vol.dtype.itemsize
|
||||
for surface in vol.fractalsurfaces:
|
||||
surfacedims = surface.get_surface_dims()
|
||||
mem_use += surfacedims[0] * surfacedims[1] * surface.dtype.itemsize
|
||||
|
||||
return mem_use
|
||||
|
||||
def tmx(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMx mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ey & Ez components
|
||||
self.ID[1, 0, :, :] = 0
|
||||
self.ID[1, 1, :, :] = 0
|
||||
self.ID[2, 0, :, :] = 0
|
||||
self.ID[2, 1, :, :] = 0
|
||||
|
||||
def tmy(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMy mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ex & Ez components
|
||||
self.ID[0, :, 0, :] = 0
|
||||
self.ID[0, :, 1, :] = 0
|
||||
self.ID[2, :, 0, :] = 0
|
||||
self.ID[2, :, 1, :] = 0
|
||||
|
||||
def tmz(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMz mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ex & Ey components
|
||||
self.ID[0, :, :, 0] = 0
|
||||
self.ID[0, :, :, 1] = 0
|
||||
self.ID[1, :, :, 0] = 0
|
||||
self.ID[1, :, :, 1] = 0
|
||||
|
||||
def calculate_dt(self):
|
||||
"""Calculate time step at the CFL limit."""
|
||||
if config.get_model_config().mode == "2D TMx":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dy**2) + (1 / self.dz**2)))
|
||||
elif config.get_model_config().mode == "2D TMy":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dz**2)))
|
||||
elif config.get_model_config().mode == "2D TMz":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2)))
|
||||
else:
|
||||
self.dt = 1 / (
|
||||
config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2) + (1 / self.dz**2))
|
||||
)
|
||||
|
||||
# Round down time step to nearest float with precision one less than
|
||||
# hardware maximum. Avoids inadvertently exceeding the CFL due to
|
||||
# binary representation of floating point number.
|
||||
self.dt = round_value(self.dt, decimalplaces=decimal.getcontext().prec - 1)
|
||||
# Copyright (C) 2015-2024: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import decimal
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gprMax import config
|
||||
from gprMax.pml import PML
|
||||
from gprMax.utilities.utilities import fft_power, round_value
|
||||
|
||||
|
||||
class FDTDGrid:
|
||||
"""Holds attributes associated with entire grid. A convenient way for
|
||||
accessing regularly used parameters.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.title = ""
|
||||
self.name = "main_grid"
|
||||
self.mem_use = 0
|
||||
|
||||
self.nx = 0
|
||||
self.ny = 0
|
||||
self.nz = 0
|
||||
self.dx = 0
|
||||
self.dy = 0
|
||||
self.dz = 0
|
||||
self.dt = 0
|
||||
self.dt_mod = None # Time step stability factor
|
||||
self.iteration = 0 # Current iteration number
|
||||
self.iterations = 0 # Total number of iterations
|
||||
self.timewindow = 0
|
||||
|
||||
# PML parameters - set some defaults to use if not user provided
|
||||
self.pmls = {}
|
||||
self.pmls["formulation"] = "HORIPML"
|
||||
self.pmls["cfs"] = []
|
||||
self.pmls["slabs"] = []
|
||||
# Ordered dictionary required so *updating* the PMLs always follows the
|
||||
# same order (the order for *building* PMLs does not matter). The order
|
||||
# itself does not matter, however, if must be the same from model to
|
||||
# model otherwise the numerical precision from adding the PML
|
||||
# corrections will be different.
|
||||
self.pmls["thickness"] = OrderedDict((key, 10) for key in PML.boundaryIDs)
|
||||
|
||||
self.materials = []
|
||||
self.mixingmodels = []
|
||||
self.averagevolumeobjects = True
|
||||
self.fractalvolumes = []
|
||||
self.geometryviews = []
|
||||
self.geometryobjectswrite = []
|
||||
self.waveforms = []
|
||||
self.voltagesources = []
|
||||
self.hertziandipoles = []
|
||||
self.magneticdipoles = []
|
||||
self.transmissionlines = []
|
||||
self.rxs = []
|
||||
self.srcsteps = [0, 0, 0]
|
||||
self.rxsteps = [0, 0, 0]
|
||||
self.snapshots = []
|
||||
self.subgrids = []
|
||||
|
||||
def within_bounds(self, p):
|
||||
if p[0] < 0 or p[0] > self.nx:
|
||||
raise ValueError("x")
|
||||
if p[1] < 0 or p[1] > self.ny:
|
||||
raise ValueError("y")
|
||||
if p[2] < 0 or p[2] > self.nz:
|
||||
raise ValueError("z")
|
||||
|
||||
def discretise_point(self, p):
|
||||
x = round_value(float(p[0]) / self.dx)
|
||||
y = round_value(float(p[1]) / self.dy)
|
||||
z = round_value(float(p[2]) / self.dz)
|
||||
return (x, y, z)
|
||||
|
||||
def round_to_grid(self, p):
|
||||
p = self.discretise_point(p)
|
||||
p_r = (p[0] * self.dx, p[1] * self.dy, p[2] * self.dz)
|
||||
return p_r
|
||||
|
||||
def within_pml(self, p):
|
||||
if (
|
||||
p[0] < self.pmls["thickness"]["x0"]
|
||||
or p[0] > self.nx - self.pmls["thickness"]["xmax"]
|
||||
or p[1] < self.pmls["thickness"]["y0"]
|
||||
or p[1] > self.ny - self.pmls["thickness"]["ymax"]
|
||||
or p[2] < self.pmls["thickness"]["z0"]
|
||||
or p[2] > self.nz - self.pmls["thickness"]["zmax"]
|
||||
):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def initialise_geometry_arrays(self):
|
||||
"""Initialise an array for volumetric material IDs (solid);
|
||||
boolean arrays for specifying whether materials can have dielectric
|
||||
smoothing (rigid); and an array for cell edge IDs (ID).
|
||||
Solid and ID arrays are initialised to free_space (one);
|
||||
rigid arrays to allow dielectric smoothing (zero).
|
||||
"""
|
||||
self.solid = np.ones((self.nx, self.ny, self.nz), dtype=np.uint32)
|
||||
self.rigidE = np.zeros((12, self.nx, self.ny, self.nz), dtype=np.int8)
|
||||
self.rigidH = np.zeros((6, self.nx, self.ny, self.nz), dtype=np.int8)
|
||||
self.ID = np.ones((6, self.nx + 1, self.ny + 1, self.nz + 1), dtype=np.uint32)
|
||||
self.IDlookup = {"Ex": 0, "Ey": 1, "Ez": 2, "Hx": 3, "Hy": 4, "Hz": 5}
|
||||
|
||||
def initialise_field_arrays(self):
|
||||
"""Initialise arrays for the electric and magnetic field components."""
|
||||
self.Ex = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Ey = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Ez = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hx = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hy = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.Hz = np.zeros((self.nx + 1, self.ny + 1, self.nz + 1), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
|
||||
def initialise_std_update_coeff_arrays(self):
|
||||
"""Initialise arrays for storing update coefficients."""
|
||||
self.updatecoeffsE = np.zeros((len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
self.updatecoeffsH = np.zeros((len(self.materials), 5), dtype=config.sim_config.dtypes["float_or_double"])
|
||||
|
||||
def initialise_dispersive_arrays(self):
|
||||
"""Initialise field arrays when there are dispersive materials present."""
|
||||
self.Tx = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
self.Ty = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
self.Tz = np.zeros(
|
||||
(config.get_model_config().materials["maxpoles"], self.nx + 1, self.ny + 1, self.nz + 1),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
|
||||
def initialise_dispersive_update_coeff_array(self):
|
||||
"""Initialise array for storing update coefficients when there are dispersive
|
||||
materials present.
|
||||
"""
|
||||
self.updatecoeffsdispersive = np.zeros(
|
||||
(len(self.materials), 3 * config.get_model_config().materials["maxpoles"]),
|
||||
dtype=config.get_model_config().materials["dispersivedtype"],
|
||||
)
|
||||
|
||||
def reset_fields(self):
|
||||
"""Clear arrays for field components and PMLs."""
|
||||
# Clear arrays for field components
|
||||
self.initialise_field_arrays()
|
||||
if config.get_model_config().materials["maxpoles"] > 0:
|
||||
self.initialise_dispersive_arrays()
|
||||
|
||||
# Clear arrays for fields in PML
|
||||
for pml in self.pmls["slabs"]:
|
||||
pml.initialise_field_arrays()
|
||||
|
||||
def mem_est_basic(self):
|
||||
"""Estimates the amount of memory (RAM) required for grid arrays.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
solidarray = self.nx * self.ny * self.nz * np.dtype(np.uint32).itemsize
|
||||
|
||||
# 12 x rigidE array components + 6 x rigidH array components
|
||||
rigidarrays = (12 + 6) * self.nx * self.ny * self.nz * np.dtype(np.int8).itemsize
|
||||
|
||||
# 6 x field arrays + 6 x ID arrays
|
||||
fieldarrays = (
|
||||
(6 + 6)
|
||||
* (self.nx + 1)
|
||||
* (self.ny + 1)
|
||||
* (self.nz + 1)
|
||||
* np.dtype(config.sim_config.dtypes["float_or_double"]).itemsize
|
||||
)
|
||||
|
||||
# PML arrays
|
||||
pmlarrays = 0
|
||||
for k, v in self.pmls["thickness"].items():
|
||||
if v > 0:
|
||||
if "x" in k:
|
||||
pmlarrays += (v + 1) * self.ny * (self.nz + 1)
|
||||
pmlarrays += (v + 1) * (self.ny + 1) * self.nz
|
||||
pmlarrays += v * self.ny * (self.nz + 1)
|
||||
pmlarrays += v * (self.ny + 1) * self.nz
|
||||
elif "y" in k:
|
||||
pmlarrays += self.nx * (v + 1) * (self.nz + 1)
|
||||
pmlarrays += (self.nx + 1) * (v + 1) * self.nz
|
||||
pmlarrays += (self.nx + 1) * v * self.nz
|
||||
pmlarrays += self.nx * v * (self.nz + 1)
|
||||
elif "z" in k:
|
||||
pmlarrays += self.nx * (self.ny + 1) * (v + 1)
|
||||
pmlarrays += (self.nx + 1) * self.ny * (v + 1)
|
||||
pmlarrays += (self.nx + 1) * self.ny * v
|
||||
pmlarrays += self.nx * (self.ny + 1) * v
|
||||
|
||||
mem_use = int(fieldarrays + solidarray + rigidarrays + pmlarrays)
|
||||
|
||||
return mem_use
|
||||
|
||||
def mem_est_dispersive(self):
|
||||
"""Estimates the amount of memory (RAM) required for dispersive grid arrays.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
mem_use = int(
|
||||
3
|
||||
* config.get_model_config().materials["maxpoles"]
|
||||
* (self.nx + 1)
|
||||
* (self.ny + 1)
|
||||
* (self.nz + 1)
|
||||
* np.dtype(config.get_model_config().materials["dispersivedtype"]).itemsize
|
||||
)
|
||||
return mem_use
|
||||
|
||||
def mem_est_fractals(self):
|
||||
"""Estimates the amount of memory (RAM) required to build any objects
|
||||
which use the FractalVolume/FractalSurface classes.
|
||||
|
||||
Returns:
|
||||
mem_use: int of memory (bytes).
|
||||
"""
|
||||
|
||||
mem_use = 0
|
||||
|
||||
for vol in self.fractalvolumes:
|
||||
mem_use += vol.nx * vol.ny * vol.nz * vol.dtype.itemsize
|
||||
for surface in vol.fractalsurfaces:
|
||||
surfacedims = surface.get_surface_dims()
|
||||
mem_use += surfacedims[0] * surfacedims[1] * surface.dtype.itemsize
|
||||
|
||||
return mem_use
|
||||
|
||||
def tmx(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMx mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ey & Ez components
|
||||
self.ID[1, 0, :, :] = 0
|
||||
self.ID[1, 1, :, :] = 0
|
||||
self.ID[2, 0, :, :] = 0
|
||||
self.ID[2, 1, :, :] = 0
|
||||
|
||||
def tmy(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMy mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ex & Ez components
|
||||
self.ID[0, :, 0, :] = 0
|
||||
self.ID[0, :, 1, :] = 0
|
||||
self.ID[2, :, 0, :] = 0
|
||||
self.ID[2, :, 1, :] = 0
|
||||
|
||||
def tmz(self):
|
||||
"""Add PEC boundaries to invariant direction in 2D TMz mode.
|
||||
N.B. 2D modes are a single cell slice of 3D grid.
|
||||
"""
|
||||
# Ex & Ey components
|
||||
self.ID[0, :, :, 0] = 0
|
||||
self.ID[0, :, :, 1] = 0
|
||||
self.ID[1, :, :, 0] = 0
|
||||
self.ID[1, :, :, 1] = 0
|
||||
|
||||
def calculate_dt(self):
|
||||
"""Calculate time step at the CFL limit."""
|
||||
if config.get_model_config().mode == "2D TMx":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dy**2) + (1 / self.dz**2)))
|
||||
elif config.get_model_config().mode == "2D TMy":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dz**2)))
|
||||
elif config.get_model_config().mode == "2D TMz":
|
||||
self.dt = 1 / (config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2)))
|
||||
else:
|
||||
self.dt = 1 / (
|
||||
config.sim_config.em_consts["c"] * np.sqrt((1 / self.dx**2) + (1 / self.dy**2) + (1 / self.dz**2))
|
||||
)
|
||||
|
||||
# Round down time step to nearest float with precision one less than
|
||||
# hardware maximum. Avoids inadvertently exceeding the CFL due to
|
||||
# binary representation of floating point number.
|
||||
self.dt = round_value(self.dt, decimalplaces=decimal.getcontext().prec - 1)
|
||||
|
||||
|
||||
def dispersion_analysis(G):
|
||||
"""Analysis of numerical dispersion (Taflove et al, 2005, p112) -
|
||||
worse case of maximum frequency and minimum wavelength
|
||||
|
||||
Args:
|
||||
G: FDTDGrid class describing a grid in a model.
|
||||
|
||||
Returns:
|
||||
results: dict of results from dispersion analysis.
|
||||
"""
|
||||
|
||||
# deltavp: physical phase velocity error (percentage)
|
||||
# N: grid sampling density
|
||||
# material: material with maximum permittivity
|
||||
# maxfreq: maximum significant frequency
|
||||
# error: error message
|
||||
results = {"deltavp": None, "N": None, "material": None, "maxfreq": [], "error": ""}
|
||||
|
||||
# Find maximum significant frequency
|
||||
if G.waveforms:
|
||||
for waveform in G.waveforms:
|
||||
if waveform.type in ["sine", "contsine"]:
|
||||
results["maxfreq"].append(4 * waveform.freq)
|
||||
|
||||
elif waveform.type == "impulse":
|
||||
results["error"] = "impulse waveform used."
|
||||
|
||||
elif waveform.type == "user":
|
||||
results["error"] = "user waveform detected."
|
||||
|
||||
else:
|
||||
# Time to analyse waveform - 4*pulse_width as using entire
|
||||
# time window can result in demanding FFT
|
||||
waveform.calculate_coefficients()
|
||||
iterations = round_value(4 * waveform.chi / G.dt)
|
||||
iterations = min(iterations, G.iterations)
|
||||
waveformvalues = np.zeros(G.iterations)
|
||||
for iteration in range(G.iterations):
|
||||
waveformvalues[iteration] = waveform.calculate_value(iteration * G.dt, G.dt)
|
||||
|
||||
# Ensure source waveform is not being overly truncated before attempting any FFT
|
||||
if np.abs(waveformvalues[-1]) < np.abs(np.amax(waveformvalues)) / 100:
|
||||
# FFT
|
||||
freqs, power = fft_power(waveformvalues, G.dt)
|
||||
# Get frequency for max power
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
|
||||
# Set maximum frequency to a threshold drop from maximum power, ignoring DC value
|
||||
try:
|
||||
freqthres = (
|
||||
np.where(
|
||||
power[freqmaxpower:] < -config.get_model_config().numdispersion["highestfreqthres"]
|
||||
)[0][0]
|
||||
+ freqmaxpower
|
||||
)
|
||||
results["maxfreq"].append(freqs[freqthres])
|
||||
except ValueError:
|
||||
results["error"] = (
|
||||
"unable to calculate maximum power "
|
||||
+ "from waveform, most likely due to "
|
||||
+ "undersampling."
|
||||
)
|
||||
|
||||
# Ignore case where someone is using a waveform with zero amplitude, i.e. on a receiver
|
||||
elif waveform.amp == 0:
|
||||
pass
|
||||
|
||||
# If waveform is truncated don't do any further analysis
|
||||
else:
|
||||
results["error"] = (
|
||||
"waveform does not fit within specified " + "time window and is therefore being truncated."
|
||||
)
|
||||
else:
|
||||
results["error"] = "no waveform detected."
|
||||
|
||||
if results["maxfreq"]:
|
||||
results["maxfreq"] = max(results["maxfreq"])
|
||||
|
||||
# Find minimum wavelength (material with maximum permittivity)
|
||||
maxer = 0
|
||||
matmaxer = ""
|
||||
for x in G.materials:
|
||||
if x.se != float("inf"):
|
||||
er = x.er
|
||||
# If there are dispersive materials calculate the complex
|
||||
# relative permittivity at maximum frequency and take the real part
|
||||
if x.__class__.__name__ == "DispersiveMaterial":
|
||||
er = x.calculate_er(results["maxfreq"])
|
||||
er = er.real
|
||||
if er > maxer:
|
||||
maxer = er
|
||||
matmaxer = x.ID
|
||||
results["material"] = next(x for x in G.materials if x.ID == matmaxer)
|
||||
|
||||
# Minimum velocity
|
||||
minvelocity = config.c / np.sqrt(maxer)
|
||||
|
||||
# Minimum wavelength
|
||||
minwavelength = minvelocity / results["maxfreq"]
|
||||
|
||||
# Maximum spatial step
|
||||
if "3D" in config.get_model_config().mode:
|
||||
delta = max(G.dx, G.dy, G.dz)
|
||||
elif "2D" in config.get_model_config().mode:
|
||||
if G.nx == 1:
|
||||
delta = max(G.dy, G.dz)
|
||||
elif G.ny == 1:
|
||||
delta = max(G.dx, G.dz)
|
||||
elif G.nz == 1:
|
||||
delta = max(G.dx, G.dy)
|
||||
|
||||
# Courant stability factor
|
||||
S = (config.c * G.dt) / delta
|
||||
|
||||
# Grid sampling density
|
||||
results["N"] = minwavelength / delta
|
||||
|
||||
# Check grid sampling will result in physical wave propagation
|
||||
if int(np.floor(results["N"])) >= config.get_model_config().numdispersion["mingridsampling"]:
|
||||
# Numerical phase velocity
|
||||
vp = np.pi / (results["N"] * np.arcsin((1 / S) * np.sin((np.pi * S) / results["N"])))
|
||||
|
||||
# Physical phase velocity error (percentage)
|
||||
results["deltavp"] = (((vp * config.c) - config.c) / config.c) * 100
|
||||
|
||||
# Store rounded down value of grid sampling density
|
||||
results["N"] = int(np.floor(results["N"]))
|
||||
|
||||
return results
|
||||
|
@@ -1,3 +1,21 @@
|
||||
# Copyright (C) 2015-2024: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from mpi4py import MPI
|
||||
@@ -13,6 +31,8 @@ class MPIGrid(FDTDGrid):
|
||||
ymax: int
|
||||
zmax: int
|
||||
|
||||
comm: MPI.Intracomm
|
||||
|
||||
def __init__(self, mpi_tasks_x: int, mpi_tasks_y: int, mpi_tasks_z: int, comm: Optional[MPI.Intracomm] = None):
|
||||
super().__init__()
|
||||
|
||||
@@ -21,7 +41,7 @@ class MPIGrid(FDTDGrid):
|
||||
else:
|
||||
self.comm = comm
|
||||
|
||||
if mpi_tasks_x * mpi_tasks_y * mpi_tasks_z > self.size:
|
||||
if mpi_tasks_x * mpi_tasks_y * mpi_tasks_z > self.comm.size:
|
||||
# TODO: Raise expection - insufficient MPI tasks to create the grid as requested
|
||||
pass
|
||||
|
||||
|
@@ -1,10 +1,24 @@
|
||||
# Copyright (C) 2015-2024: The University of Edinburgh, United Kingdom
|
||||
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
from importlib import import_module
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gprMax import config
|
||||
from gprMax.grid.fdtd_grid import FDTDGrid
|
||||
from gprMax.utilities.utilities import fft_power, round_value
|
||||
|
||||
|
||||
class OpenCLGrid(FDTDGrid):
|
||||
@@ -50,134 +64,3 @@ class OpenCLGrid(FDTDGrid):
|
||||
self.Tx_dev = self.clarray.to_device(queue, self.Tx)
|
||||
self.Ty_dev = self.clarray.to_device(queue, self.Ty)
|
||||
self.Tz_dev = self.clarray.to_device(queue, self.Tz)
|
||||
|
||||
|
||||
def dispersion_analysis(G):
|
||||
"""Analysis of numerical dispersion (Taflove et al, 2005, p112) -
|
||||
worse case of maximum frequency and minimum wavelength
|
||||
|
||||
Args:
|
||||
G: FDTDGrid class describing a grid in a model.
|
||||
|
||||
Returns:
|
||||
results: dict of results from dispersion analysis.
|
||||
"""
|
||||
|
||||
# deltavp: physical phase velocity error (percentage)
|
||||
# N: grid sampling density
|
||||
# material: material with maximum permittivity
|
||||
# maxfreq: maximum significant frequency
|
||||
# error: error message
|
||||
results = {"deltavp": None, "N": None, "material": None, "maxfreq": [], "error": ""}
|
||||
|
||||
# Find maximum significant frequency
|
||||
if G.waveforms:
|
||||
for waveform in G.waveforms:
|
||||
if waveform.type in ["sine", "contsine"]:
|
||||
results["maxfreq"].append(4 * waveform.freq)
|
||||
|
||||
elif waveform.type == "impulse":
|
||||
results["error"] = "impulse waveform used."
|
||||
|
||||
elif waveform.type == "user":
|
||||
results["error"] = "user waveform detected."
|
||||
|
||||
else:
|
||||
# Time to analyse waveform - 4*pulse_width as using entire
|
||||
# time window can result in demanding FFT
|
||||
waveform.calculate_coefficients()
|
||||
iterations = round_value(4 * waveform.chi / G.dt)
|
||||
iterations = min(iterations, G.iterations)
|
||||
waveformvalues = np.zeros(G.iterations)
|
||||
for iteration in range(G.iterations):
|
||||
waveformvalues[iteration] = waveform.calculate_value(iteration * G.dt, G.dt)
|
||||
|
||||
# Ensure source waveform is not being overly truncated before attempting any FFT
|
||||
if np.abs(waveformvalues[-1]) < np.abs(np.amax(waveformvalues)) / 100:
|
||||
# FFT
|
||||
freqs, power = fft_power(waveformvalues, G.dt)
|
||||
# Get frequency for max power
|
||||
freqmaxpower = np.where(np.isclose(power, 0))[0][0]
|
||||
|
||||
# Set maximum frequency to a threshold drop from maximum power, ignoring DC value
|
||||
try:
|
||||
freqthres = (
|
||||
np.where(
|
||||
power[freqmaxpower:] < -config.get_model_config().numdispersion["highestfreqthres"]
|
||||
)[0][0]
|
||||
+ freqmaxpower
|
||||
)
|
||||
results["maxfreq"].append(freqs[freqthres])
|
||||
except ValueError:
|
||||
results["error"] = (
|
||||
"unable to calculate maximum power "
|
||||
+ "from waveform, most likely due to "
|
||||
+ "undersampling."
|
||||
)
|
||||
|
||||
# Ignore case where someone is using a waveform with zero amplitude, i.e. on a receiver
|
||||
elif waveform.amp == 0:
|
||||
pass
|
||||
|
||||
# If waveform is truncated don't do any further analysis
|
||||
else:
|
||||
results["error"] = (
|
||||
"waveform does not fit within specified " + "time window and is therefore being truncated."
|
||||
)
|
||||
else:
|
||||
results["error"] = "no waveform detected."
|
||||
|
||||
if results["maxfreq"]:
|
||||
results["maxfreq"] = max(results["maxfreq"])
|
||||
|
||||
# Find minimum wavelength (material with maximum permittivity)
|
||||
maxer = 0
|
||||
matmaxer = ""
|
||||
for x in G.materials:
|
||||
if x.se != float("inf"):
|
||||
er = x.er
|
||||
# If there are dispersive materials calculate the complex
|
||||
# relative permittivity at maximum frequency and take the real part
|
||||
if x.__class__.__name__ == "DispersiveMaterial":
|
||||
er = x.calculate_er(results["maxfreq"])
|
||||
er = er.real
|
||||
if er > maxer:
|
||||
maxer = er
|
||||
matmaxer = x.ID
|
||||
results["material"] = next(x for x in G.materials if x.ID == matmaxer)
|
||||
|
||||
# Minimum velocity
|
||||
minvelocity = config.c / np.sqrt(maxer)
|
||||
|
||||
# Minimum wavelength
|
||||
minwavelength = minvelocity / results["maxfreq"]
|
||||
|
||||
# Maximum spatial step
|
||||
if "3D" in config.get_model_config().mode:
|
||||
delta = max(G.dx, G.dy, G.dz)
|
||||
elif "2D" in config.get_model_config().mode:
|
||||
if G.nx == 1:
|
||||
delta = max(G.dy, G.dz)
|
||||
elif G.ny == 1:
|
||||
delta = max(G.dx, G.dz)
|
||||
elif G.nz == 1:
|
||||
delta = max(G.dx, G.dy)
|
||||
|
||||
# Courant stability factor
|
||||
S = (config.c * G.dt) / delta
|
||||
|
||||
# Grid sampling density
|
||||
results["N"] = minwavelength / delta
|
||||
|
||||
# Check grid sampling will result in physical wave propagation
|
||||
if int(np.floor(results["N"])) >= config.get_model_config().numdispersion["mingridsampling"]:
|
||||
# Numerical phase velocity
|
||||
vp = np.pi / (results["N"] * np.arcsin((1 / S) * np.sin((np.pi * S) / results["N"])))
|
||||
|
||||
# Physical phase velocity error (percentage)
|
||||
results["deltavp"] = (((vp * config.c) - config.c) / config.c) * 100
|
||||
|
||||
# Store rounded down value of grid sampling density
|
||||
results["N"] = int(np.floor(results["N"]))
|
||||
|
||||
return results
|
||||
|
@@ -36,7 +36,7 @@ import gprMax.config as config
|
||||
from .cython.yee_cell_build import build_electric_components, build_magnetic_components
|
||||
from .fields_outputs import write_hdf5_outputfile
|
||||
from .geometry_outputs import save_geometry_views
|
||||
from .grid import dispersion_analysis
|
||||
from .grid.fdtd_grid import dispersion_analysis
|
||||
from .hash_cmds_file import parse_hash_commands
|
||||
from .materials import process_materials
|
||||
from .pml import CFS, build_pml, print_pml_info
|
||||
@@ -351,7 +351,7 @@ class ModelBuildRun:
|
||||
if config.sim_config.general["solver"] == "cuda":
|
||||
mem_str = f" host + ~{humanize.naturalsize(solver.memused)} device"
|
||||
elif config.sim_config.general["solver"] == "opencl":
|
||||
mem_str = f" host + unknown for device"
|
||||
mem_str = f" host + unknown for device"
|
||||
|
||||
logger.info(f"\nMemory used (estimated): " + f"~{humanize.naturalsize(self.p.memory_full_info().uss)}{mem_str}")
|
||||
logger.info(
|
||||
|
@@ -17,6 +17,9 @@
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import gprMax.config as config
|
||||
from gprMax.grid.cuda_grid import CUDAGrid
|
||||
from gprMax.grid.fdtd_grid import FDTDGrid
|
||||
from gprMax.grid.opencl_grid import OpenCLGrid
|
||||
|
||||
from .grid import CUDAGrid, FDTDGrid, OpenCLGrid
|
||||
from .subgrids.updates import create_updates as create_subgrid_updates
|
||||
|
@@ -18,7 +18,7 @@
|
||||
|
||||
import logging
|
||||
|
||||
from ..grid import FDTDGrid
|
||||
from gprMax.grid.fdtd_grid import FDTDGrid
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@@ -5,7 +5,7 @@ import pytest
|
||||
from pytest import MonkeyPatch
|
||||
|
||||
from gprMax import config, gprMax
|
||||
from gprMax.grid import FDTDGrid
|
||||
from gprMax.grid.fdtd_grid import FDTDGrid
|
||||
from gprMax.materials import create_built_in_materials
|
||||
from gprMax.model_build_run import GridBuilder
|
||||
from gprMax.pml import CFS
|
||||
|
在新工单中引用
屏蔽一个用户