Improved test method to use decibels for differencing plots/reporting.

这个提交包含在:
Craig Warren
2017-01-30 18:20:49 +00:00
父节点 8802210a4b
当前提交 c99530a04b

查看文件

@@ -25,7 +25,7 @@ from colorama import init, Fore, Style
init()
import h5py
import numpy as np
np.seterr(invalid='raise')
np.seterr(divide='raise')
import matplotlib.pyplot as plt
if sys.platform == 'linux':
@@ -53,6 +53,9 @@ testmodels = ['hertzian_dipole_fs_analytical', '2D_ExHyHz', '2D_EyHxHz', '2D_EzH
testresults = dict.fromkeys(testmodels)
path = '/rxs/rx1/'
# Minimum value of difference to plot (dB)
plotmin = -160
starttime = perf_counter()
for i, model in enumerate(testmodels):
@@ -81,6 +84,8 @@ for i, model in enumerate(testmodels):
datatest = np.zeros((filetest.attrs['Iterations'], len(outputstest)), dtype=floattype)
for ID, name in enumerate(outputstest):
datatest[:, ID] = filetest[path + str(name)][:]
if np.any(np.isnan(datatest[:, ID])):
raise GeneralError('Test data contains NaNs')
# Tx/Rx position to feed to analytical solution
rxpos = filetest[path].attrs['Position']
@@ -91,23 +96,10 @@ for i, model in enumerate(testmodels):
dataref = hertzian_dipole_fs(filetest.attrs['Iterations'], filetest.attrs['dt'], filetest.attrs['dx, dy, dz'], rxposrelative)
filetest.close()
# Diffs
datadiffs = np.zeros(datatest.shape, dtype=floattype)
for i in range(len(outputstest)):
max = np.amax(np.abs(dataref[:, i]))
try:
datadiffs[:, i] = ((np.abs(dataref[:, i] - datatest[:, i])) / max) * 100
except FloatingPointError:
datadiffs[:, i] = 0
# Register test passed
threshold = 2 # Percent
if np.amax(np.amax(datadiffs)) < 2:
testresults[model]['Pass'] = True
else:
testresults[model]['Pass'] = False
testresults[model]['Max diff'] = np.amax(np.amax(datadiffs))
# Threshold below which test is considered passed (dB)
threshold = -35
testresults[model]['Threshold'] = threshold
else:
# Get output for model and reference files
@@ -146,25 +138,33 @@ for i, model in enumerate(testmodels):
for ID, name in enumerate(outputsref):
dataref[:, ID] = fileref[path + str(name)][:]
datatest[:, ID] = filetest[path + str(name)][:]
if np.any(np.isnan(datatest[:, ID])):
raise GeneralError('Test data contains NaNs')
fileref.close()
filetest.close()
# Threshold below which test is considered passed (dB)
threshold = -120
testresults[model]['Threshold'] = threshold
# Diffs
datadiffs = np.zeros(datatest.shape, dtype=floattype)
for i in range(len(outputstest)):
max = np.nanmax(np.abs(dataref[:, i]))
try:
datadiffs[:, i] = ((np.abs(dataref[:, i] - datatest[:, i])) / max) * 100
except FloatingPointError:
datadiffs[:, i] = 0
# Diffs
datadiffs = np.zeros(datatest.shape, dtype=floattype)
for i in range(len(outputstest)):
max = np.amax(np.abs(dataref[:, i]))
try:
datadiffs[:, i] = 20 * np.log10(((np.abs(dataref[:, i] - datatest[:, i])) / max))
# If a divide by zero error is encountered, consider the difference to be minimum plotted
except FloatingPointError:
datadiffs[:, i] = plotmin
# Register test passed
if not np.any(datadiffs):
testresults[model]['Pass'] = True
else:
testresults[model]['Pass'] = False
testresults[model]['Max diff'] = np.amax(np.amax(datadiffs))
# Register test passed/failed
maxdiff = np.amax(np.amax(datadiffs))
if maxdiff <= threshold:
testresults[model]['Pass'] = True
else:
testresults[model]['Pass'] = False
testresults[model]['Max diff'] = maxdiff
# Plot datasets
fig1, ((ex1, hx1), (ey1, hy1), (ez1, hz1)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num=model + '.in', figsize=(20, 10), facecolor='w', edgecolor='w')
@@ -195,10 +195,11 @@ for i, model in enumerate(testmodels):
hx2.plot(timeref, datadiffs[:, 3], 'r', lw=2, label='Hx')
hy2.plot(timeref, datadiffs[:, 4], 'r', lw=2, label='Hy')
hz2.plot(timeref, datadiffs[:, 5], 'r', lw=2, label='Hz')
ylabels = ['$E_x$, difference [%]', '$H_x$, difference [%]', '$E_y$, difference [%]', '$H_y$, difference [%]', '$E_z$, difference [%]', '$H_z$, difference [%]']
ylabels = ['$E_x$, difference [dB]', '$H_x$, difference [dB]', '$E_y$, difference [dB]', '$H_y$, difference [dB]', '$E_z$, difference [dB]', '$H_z$, difference [dB]']
for i, ax in enumerate(fig2.axes):
ax.set_ylabel(ylabels[i])
ax.set_xlim(0, np.amax(timetest))
ax.set_ylim([plotmin, 0])
ax.grid()
# Save a PDF/PNG of the figure
@@ -215,14 +216,14 @@ passed = 0
for name, data in testresults.items():
if 'analytical' in name:
if data['Pass']:
print(Fore.GREEN + "Test '{}.in' using v.{} compared to analytical solution passed. Maximum difference = {}%".format(name, data['Test version'], data['Max diff']) + Style.RESET_ALL)
print(Fore.GREEN + "Test '{}.in' using v.{} compared to analytical solution passed. Max difference {:.2f}dB <= {:.2f}dB threshold".format(name, data['Test version'], data['Max diff'], data['Threshold']) + Style.RESET_ALL)
passed += 1
else:
print(Fore.RED + "Test '{}.in' using v.{} compared to analytical solution failed. Maximum difference = {}%".format(name, data['Test version'], data['Max diff']) + Style.RESET_ALL)
print(Fore.RED + "Test '{}.in' using v.{} compared to analytical solution failed. Max difference {:.2f}dB <= {:.2f}dB threshold".format(name, data['Test version'], data['Max diff'], data['Threshold']) + Style.RESET_ALL)
else:
if data['Pass']:
print(Fore.GREEN + "Test '{}.in' using v.{} compared to reference solution using v.{} passed. Maximum difference = {}%".format(name, data['Test version'], data['Ref version'], data['Max diff']) + Style.RESET_ALL)
print(Fore.GREEN + "Test '{}.in' using v.{} compared to reference solution using v.{} passed. Max difference {:.2f}dB <= {:.2f}dB threshold".format(name, data['Test version'], data['Ref version'], data['Max diff'], data['Threshold']) + Style.RESET_ALL)
passed += 1
else:
print(Fore.RED + "Test '{}.in' using v.{} compared to reference solution using v.{} failed. Maximum difference = {}%".format(name, data['Test version'], data['Ref version'], data['Max diff']) + Style.RESET_ALL)
print(Fore.RED + "Test '{}.in' using v.{} compared to reference solution using v.{} failed. Max difference {:.2f}dB <= {:.2f}dB threshold".format(name, data['Test version'], data['Ref version'], data['Max diff'], data['Threshold']) + Style.RESET_ALL)
print('{} of {} tests passed successfully in [HH:MM:SS]: {}'.format(passed, len(testmodels), datetime.timedelta(seconds=int(stoptime - starttime))))