geometry output speed up

这个提交包含在:
jasminium
2017-12-15 19:54:46 +00:00
父节点 67a72d1d28
当前提交 c2dd4ba348
共有 2 个文件被更改,包括 125 次插入55 次删除

63
gprMax/geometry_out.pyx 普通文件
查看文件

@@ -0,0 +1,63 @@
cimport numpy as np
from gprMax.constants cimport floattype_t
cpdef void define_fine_geometry(
int nx,
int ny,
int nz,
int xs,
int xf,
int ys,
int yf,
int zs,
int zf,
float dx,
float dy,
float dz,
np.uint32_t[:, :, :, :] ID,
floattype_t[:, :] points,
np.uint32_t[:, :] x_lines,
np.uint32_t[:] x_materials,
np.uint32_t[:, :] y_lines,
np.uint32_t[:] y_materials,
np.uint32_t[:, :] z_lines,
np.uint32_t[:] z_materials
):
cdef Py_ssize_t i, j, k
cdef Py_ssize_t label = 0
cdef Py_ssize_t counter_x = 0
cdef Py_ssize_t counter_y = 0
cdef Py_ssize_t counter_z = 0
cdef int label_x, label_y, label_z
for i in range(xs, xf + 1):
for j in range(ys, yf + 1):
for k in range(zs, zf + 1):
points[label][0] = i * dx
points[label][1] = j * dy
points[label][2] = k * dz
if i < xf:
# x connectivity
label_x = label + (ny + 1) * (nz + 1)
x_lines[counter_x][0] = label
x_lines[counter_x][1] = label_x
# material for the line
x_materials[counter_x] = ID[0, i, j, k]
counter_x += 1
if j < yf:
label_y = label + nz + 1
y_lines[counter_y][0] = label
y_lines[counter_y][1] = label_y
y_materials[counter_y] = ID[1, i, j, k]
counter_y += 1
if k < zf:
label_z = label + 1
z_lines[counter_z][0] = label
z_lines[counter_z][1] = label_z
z_materials[counter_z] = ID[2, i, j, k]
counter_z += 1
label = label + 1

查看文件

@@ -26,6 +26,8 @@ from struct import pack
from gprMax._version import __version__
from gprMax.utilities import round_value
from .geometry_out import define_fine_geometry
class GeometryView(object):
"""Views of the geometry of the model."""
@@ -181,80 +183,85 @@ class GeometryView(object):
f.write('</CellData>\n'.encode('utf-8'))
f.write('</Piece>\n</PolyData>\n<AppendedData encoding="raw">\n_'.encode('utf-8'))
# Coordinates of each point
n_points = (self.nx + 1) * (self.ny + 1) * (self.nz + 1)
points = np.zeros((n_points, 3), dtype=np.float32)
# Write points
# Number of x components
n_x_lines = self.nx * (self.ny + 1) * (self.nz + 1)
# Node connectivity. Each index contains a pair of connected x nodes
x_lines = np.zeros((n_x_lines, 2), dtype=np.uint32)
# Material at Ex location in Yee cell.
x_materials = np.zeros((n_x_lines), dtype=np.uint32)
n_y_lines = self.ny * (self.nx + 1) * (self.nz + 1)
y_lines = np.zeros((n_y_lines, 2), dtype=np.uint32)
y_materials = np.zeros((n_y_lines), dtype=np.uint32)
n_z_lines = self.nz * (self.nx + 1) * (self.ny + 1)
z_lines = np.zeros((n_z_lines, 2), dtype=np.uint32)
z_materials = np.zeros((n_z_lines), dtype=np.uint32)
define_fine_geometry(self.nx,
self.ny,
self.nz,
self.xs,
self.xf,
self.ys,
self.yf,
self.zs,
self.zf,
G.dx,
G.dy,
G.dz,
G.ID,
points,
x_lines,
x_materials,
y_lines,
y_materials,
z_lines,
z_materials)
# Write point data
datasize = np.dtype(np.float32).itemsize * self.vtk_numpoints * self.vtk_numpoint_components
f.write(pack('I', datasize))
for i in range(self.xs, self.xf + 1):
for j in range(self.ys, self.yf + 1):
for k in range(self.zs, self.zf + 1):
pbar.update(n=12)
f.write(pack('fff', i * G.dx, j * G.dy, k * G.dz))
f.write(points.tostring())
pbar.update(n=points.nbytes)
# Write cell type (line) connectivity for x components
# Write connectivity data
datasize = np.dtype(np.uint32).itemsize * self.vtk_numlines * self.vtk_numline_components
f.write(pack('I', datasize))
vtk_x2 = (self.ny + 1) * (self.nz + 1)
for vtk_x1 in range(self.nx * (self.ny + 1) * (self.nz + 1)):
pbar.update(n=8)
f.write(pack('II', vtk_x1, vtk_x2))
# print('x {} {}'.format(vtk_x1, vtk_x2))
vtk_x2 += 1
pbar.update(n=4)
# Write cell type (line) connectivity for y components
vtk_ycnt1 = 1
vtk_ycnt2 = 0
for vtk_y1 in range((self.nx + 1) * (self.ny + 1) * (self.nz + 1)):
if vtk_y1 >= (vtk_ycnt1 * (self.ny + 1) * (self.nz + 1)) - (self.nz + 1) and vtk_y1 < vtk_ycnt1 * (self.ny + 1) * (self.nz + 1):
vtk_ycnt2 += 1
else:
vtk_y2 = vtk_y1 + self.nz + 1
pbar.update(n=8)
f.write(pack('II', vtk_y1, vtk_y2))
# print('y {} {}'.format(vtk_y1, vtk_y2))
if vtk_ycnt2 == self.nz + 1:
vtk_ycnt1 += 1
vtk_ycnt2 = 0
# Write cell type (line) connectivity for z components
vtk_zcnt = self.nz
for vtk_z1 in range((self.nx + 1) * (self.ny + 1) * self.nz + (self.nx + 1) * (self.ny + 1)):
if vtk_z1 != vtk_zcnt:
vtk_z2 = vtk_z1 + 1
pbar.update(n=8)
f.write(pack('II', vtk_z1, vtk_z2))
# print('z {} {}'.format(vtk_z1, vtk_z2))
else:
vtk_zcnt += self.nz + 1
f.write(x_lines.tostring())
pbar.update(n=x_lines.nbytes)
f.write(y_lines.tostring())
pbar.update(n=y_lines.nbytes)
f.write(z_lines.tostring())
pbar.update(n=z_lines.nbytes)
# Write cell type (line) offsets
vtk_cell_pts = 2
datasize = np.dtype(np.uint32).itemsize * self.vtk_numlines
f.write(pack('I', datasize))
pbar.update(n=4)
for vtk_offsets in range(vtk_cell_pts, (self.vtk_numline_components * self.vtk_numlines) + vtk_cell_pts, vtk_cell_pts):
pbar.update(n=4)
f.write(pack('I', vtk_offsets))
pbar.update(n=4)
# Write material IDs per-cell-edge, i.e. from ID array
datasize = np.dtype(np.uint32).itemsize * self.vtk_numlines
f.write(pack('I', datasize))
for i in range(self.xs, self.xf):
for j in range(self.ys, self.yf + 1):
for k in range(self.zs, self.zf + 1):
pbar.update(n=4)
f.write(pack('I', G.ID[0, i, j, k]))
pbar.update(n=4)
for i in range(self.xs, self.xf + 1):
for j in range(self.ys, self.yf):
for k in range(self.zs, self.zf + 1):
pbar.update(n=4)
f.write(pack('I', G.ID[1, i, j, k]))
for i in range(self.xs, self.xf + 1):
for j in range(self.ys, self.yf + 1):
for k in range(self.zs, self.zf):
pbar.update(n=4)
f.write(pack('I', G.ID[2, i, j, k]))
f.write(x_materials.tostring())
pbar.update(n=x_materials.nbytes)
f.write(y_materials.tostring())
pbar.update(n=y_materials.nbytes)
f.write(z_materials.tostring())
pbar.update(n=z_materials.nbytes)
f.write('\n</AppendedData>\n</VTKFile>'.encode('utf-8'))