你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 04:56:51 +08:00
Created function to run Taguchi optimisation and placed in this module.
这个提交包含在:
@@ -16,13 +16,133 @@
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import os
|
||||
import importlib, os
|
||||
from collections import OrderedDict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gprMax.constants import floattype
|
||||
from gprMax.exceptions import CmdInputError
|
||||
from gprMax.gprMax import run_std_sim, run_mpi_sim
|
||||
|
||||
|
||||
def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
|
||||
"""Run a simulation using Taguchi's optmisation process.
|
||||
|
||||
Args:
|
||||
args (dict): Namespace with command line arguments
|
||||
numbermodelruns (int): Total number of model runs.
|
||||
inputfile (str): Name of the input file to open.
|
||||
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
|
||||
"""
|
||||
|
||||
if numbermodelruns > 1:
|
||||
raise CmdInputError('When a Taguchi optimisation is being carried out the number of model runs argument is not required')
|
||||
|
||||
inputfileparts = os.path.splitext(inputfile)
|
||||
|
||||
# Default maximum number of iterations of optimisation to perform (used if the stopping criterion is not achieved)
|
||||
maxiterations = 20
|
||||
|
||||
# Process Taguchi code blocks in the input file; pass in ordered dictionary to hold parameters to optimise
|
||||
tmp = usernamespace.copy()
|
||||
tmp.update({'optparams': OrderedDict()})
|
||||
taguchinamespace = taguchi_code_blocks(inputfile, tmp)
|
||||
|
||||
# Extract dictionaries and variables containing initialisation parameters
|
||||
optparams = taguchinamespace['optparams']
|
||||
fitness = taguchinamespace['fitness']
|
||||
if 'maxiterations' in taguchinamespace:
|
||||
maxiterations = taguchinamespace['maxiterations']
|
||||
|
||||
# Store initial parameter ranges
|
||||
optparamsinit = list(optparams.items())
|
||||
|
||||
# Dictionary to hold history of optmised values of parameters
|
||||
optparamshist = OrderedDict((key, list()) for key in optparams)
|
||||
|
||||
# Import specified fitness function
|
||||
fitness_metric = getattr(importlib.import_module('user_libs.optimisation_taguchi_fitness'), fitness['name'])
|
||||
|
||||
# Select OA
|
||||
OA, N, cols, k, s, t = construct_OA(optparams)
|
||||
print('\n{}\n\nTaguchi optimisation: orthogonal array with {} experiments, {} parameters ({} used), {} levels, and strength {} will be used.'.format(68*'*', N, cols, k, s, t))
|
||||
|
||||
# Initialise arrays and lists to store parameters required throughout optimisation
|
||||
# Lower, central, and upper values for each parameter
|
||||
levels = np.zeros((s, k), dtype=floattype)
|
||||
# Optimal lower, central, or upper value for each parameter
|
||||
levelsopt = np.zeros(k, dtype=floattype)
|
||||
# Difference used to set values for levels
|
||||
levelsdiff = np.zeros(k, dtype=floattype)
|
||||
# History of fitness values from each confirmation experiment
|
||||
fitnessvalueshist = []
|
||||
|
||||
iteration = 0
|
||||
while iteration < maxiterations:
|
||||
# Reset number of model runs to number of experiments
|
||||
numbermodelruns = N
|
||||
usernamespace['number_model_runs'] = numbermodelruns
|
||||
|
||||
# Fitness values for each experiment
|
||||
fitnessvalues = []
|
||||
|
||||
# Set parameter ranges and define experiments
|
||||
optparams, levels, levelsdiff = calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, iteration)
|
||||
|
||||
# Run model for each experiment
|
||||
if args.mpi: # Mixed mode MPI/OpenMP - MPI task farm for models with each model parallelised with OpenMP
|
||||
run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams)
|
||||
else: # Standard behaviour - models run serially with each model parallelised with OpenMP
|
||||
run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams)
|
||||
|
||||
# Calculate fitness value for each experiment
|
||||
for experiment in range(1, numbermodelruns + 1):
|
||||
outputfile = inputfileparts[0] + str(experiment) + '.out'
|
||||
fitnessvalues.append(fitness_metric(outputfile, fitness['args']))
|
||||
os.remove(outputfile)
|
||||
|
||||
print('\nTaguchi optimisation, iteration {}: {} initial experiments with fitness values {}.'.format(iteration + 1, numbermodelruns, fitnessvalues))
|
||||
|
||||
# Calculate optimal levels from fitness values by building a response table; update dictionary of parameters with optimal values
|
||||
optparams, levelsopt = calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k)
|
||||
|
||||
# Run a confirmation experiment with optimal values
|
||||
numbermodelruns = 1
|
||||
usernamespace['number_model_runs'] = numbermodelruns
|
||||
run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams)
|
||||
|
||||
# Calculate fitness value for confirmation experiment
|
||||
outputfile = inputfileparts[0] + '.out'
|
||||
fitnessvalueshist.append(fitness_metric(outputfile, fitness['args']))
|
||||
|
||||
# Rename confirmation experiment output file so that it is retained for each iteraction
|
||||
os.rename(outputfile, os.path.splitext(outputfile)[0] + '_final' + str(iteration + 1) + '.out')
|
||||
|
||||
print('\nTaguchi optimisation, iteration {} completed. History of optimal parameter values {} and of fitness values {}'.format(iteration + 1, dict(optparamshist), fitnessvalueshist, 68*'*'))
|
||||
iteration += 1
|
||||
|
||||
# Stop optimisation if stopping criterion has been reached
|
||||
if fitnessvalueshist[iteration - 1] > fitness['stop']:
|
||||
print('\nTaguchi optimisation stopped as fitness criteria reached')
|
||||
break
|
||||
|
||||
# Stop optimisation if successive fitness values are within a percentage threshold
|
||||
if iteration > 2:
|
||||
fitnessvaluesclose = (np.abs(fitnessvalueshist[iteration - 2] - fitnessvalueshist[iteration - 1]) / fitnessvalueshist[iteration - 1]) * 100
|
||||
fitnessvaluesthres = 0.1
|
||||
if fitnessvaluesclose < fitnessvaluesthres:
|
||||
print('\nTaguchi optimisation stopped as successive fitness values within {}%'.format(fitnessvaluesthres))
|
||||
break
|
||||
|
||||
# Save optimisation parameters history and fitness values history to file
|
||||
opthistfile = inputfileparts[0] + '_hist'
|
||||
np.savez(opthistfile, dict(optparamshist), fitnessvalueshist)
|
||||
|
||||
print('\n{}\nTaguchi optimisation completed after {} iteration(s).\nHistory of optimal parameter values {} and of fitness values {}\n{}\n'.format(68*'*', iteration, dict(optparamshist), fitnessvalueshist, 68*'*'))
|
||||
|
||||
# Plot the history of fitness values and each optimised parameter values for the optimisation
|
||||
plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit)
|
||||
|
||||
|
||||
def taguchi_code_blocks(inputfile, taguchinamespace):
|
||||
@@ -114,6 +234,7 @@ def construct_OA(optparams):
|
||||
# Cut down OA columns to number of parameters to optimise
|
||||
OA = OA[:, 0:k]
|
||||
|
||||
# THIS CASE NEEDS FURTHER TESTING
|
||||
else:
|
||||
p = int(np.ceil(np.log(k * (s - 1) + 1) / np.log(s)))
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户