Created function to run Taguchi optimisation and placed in this module.

这个提交包含在:
Craig Warren
2016-02-26 15:28:30 +00:00
父节点 0872ede47d
当前提交 bd0d0a5710

查看文件

@@ -16,13 +16,133 @@
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import os
import importlib, os
from collections import OrderedDict
import numpy as np
from gprMax.constants import floattype
from gprMax.exceptions import CmdInputError
from gprMax.gprMax import run_std_sim, run_mpi_sim
def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
"""Run a simulation using Taguchi's optmisation process.
Args:
args (dict): Namespace with command line arguments
numbermodelruns (int): Total number of model runs.
inputfile (str): Name of the input file to open.
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
"""
if numbermodelruns > 1:
raise CmdInputError('When a Taguchi optimisation is being carried out the number of model runs argument is not required')
inputfileparts = os.path.splitext(inputfile)
# Default maximum number of iterations of optimisation to perform (used if the stopping criterion is not achieved)
maxiterations = 20
# Process Taguchi code blocks in the input file; pass in ordered dictionary to hold parameters to optimise
tmp = usernamespace.copy()
tmp.update({'optparams': OrderedDict()})
taguchinamespace = taguchi_code_blocks(inputfile, tmp)
# Extract dictionaries and variables containing initialisation parameters
optparams = taguchinamespace['optparams']
fitness = taguchinamespace['fitness']
if 'maxiterations' in taguchinamespace:
maxiterations = taguchinamespace['maxiterations']
# Store initial parameter ranges
optparamsinit = list(optparams.items())
# Dictionary to hold history of optmised values of parameters
optparamshist = OrderedDict((key, list()) for key in optparams)
# Import specified fitness function
fitness_metric = getattr(importlib.import_module('user_libs.optimisation_taguchi_fitness'), fitness['name'])
# Select OA
OA, N, cols, k, s, t = construct_OA(optparams)
print('\n{}\n\nTaguchi optimisation: orthogonal array with {} experiments, {} parameters ({} used), {} levels, and strength {} will be used.'.format(68*'*', N, cols, k, s, t))
# Initialise arrays and lists to store parameters required throughout optimisation
# Lower, central, and upper values for each parameter
levels = np.zeros((s, k), dtype=floattype)
# Optimal lower, central, or upper value for each parameter
levelsopt = np.zeros(k, dtype=floattype)
# Difference used to set values for levels
levelsdiff = np.zeros(k, dtype=floattype)
# History of fitness values from each confirmation experiment
fitnessvalueshist = []
iteration = 0
while iteration < maxiterations:
# Reset number of model runs to number of experiments
numbermodelruns = N
usernamespace['number_model_runs'] = numbermodelruns
# Fitness values for each experiment
fitnessvalues = []
# Set parameter ranges and define experiments
optparams, levels, levelsdiff = calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, iteration)
# Run model for each experiment
if args.mpi: # Mixed mode MPI/OpenMP - MPI task farm for models with each model parallelised with OpenMP
run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams)
else: # Standard behaviour - models run serially with each model parallelised with OpenMP
run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams)
# Calculate fitness value for each experiment
for experiment in range(1, numbermodelruns + 1):
outputfile = inputfileparts[0] + str(experiment) + '.out'
fitnessvalues.append(fitness_metric(outputfile, fitness['args']))
os.remove(outputfile)
print('\nTaguchi optimisation, iteration {}: {} initial experiments with fitness values {}.'.format(iteration + 1, numbermodelruns, fitnessvalues))
# Calculate optimal levels from fitness values by building a response table; update dictionary of parameters with optimal values
optparams, levelsopt = calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N, k)
# Run a confirmation experiment with optimal values
numbermodelruns = 1
usernamespace['number_model_runs'] = numbermodelruns
run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams)
# Calculate fitness value for confirmation experiment
outputfile = inputfileparts[0] + '.out'
fitnessvalueshist.append(fitness_metric(outputfile, fitness['args']))
# Rename confirmation experiment output file so that it is retained for each iteraction
os.rename(outputfile, os.path.splitext(outputfile)[0] + '_final' + str(iteration + 1) + '.out')
print('\nTaguchi optimisation, iteration {} completed. History of optimal parameter values {} and of fitness values {}'.format(iteration + 1, dict(optparamshist), fitnessvalueshist, 68*'*'))
iteration += 1
# Stop optimisation if stopping criterion has been reached
if fitnessvalueshist[iteration - 1] > fitness['stop']:
print('\nTaguchi optimisation stopped as fitness criteria reached')
break
# Stop optimisation if successive fitness values are within a percentage threshold
if iteration > 2:
fitnessvaluesclose = (np.abs(fitnessvalueshist[iteration - 2] - fitnessvalueshist[iteration - 1]) / fitnessvalueshist[iteration - 1]) * 100
fitnessvaluesthres = 0.1
if fitnessvaluesclose < fitnessvaluesthres:
print('\nTaguchi optimisation stopped as successive fitness values within {}%'.format(fitnessvaluesthres))
break
# Save optimisation parameters history and fitness values history to file
opthistfile = inputfileparts[0] + '_hist'
np.savez(opthistfile, dict(optparamshist), fitnessvalueshist)
print('\n{}\nTaguchi optimisation completed after {} iteration(s).\nHistory of optimal parameter values {} and of fitness values {}\n{}\n'.format(68*'*', iteration, dict(optparamshist), fitnessvalueshist, 68*'*'))
# Plot the history of fitness values and each optimised parameter values for the optimisation
plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit)
def taguchi_code_blocks(inputfile, taguchinamespace):
@@ -114,6 +234,7 @@ def construct_OA(optparams):
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:k]
# THIS CASE NEEDS FURTHER TESTING
else:
p = int(np.ceil(np.log(k * (s - 1) + 1) / np.log(s)))