Added beginnings of function to write OAs.

这个提交包含在:
Craig Warren
2016-01-21 09:56:32 +00:00
父节点 b771bd49a7
当前提交 af2f1b2965

查看文件

@@ -56,7 +56,7 @@ def taguchi_code_blocks(inputfile, taguchinamespace):
return taguchinamespace
def select_OA(optparams):
def construct_OA(optparams):
"""Load an orthogonal array (OA) from a numpy file. Configure and return OA and properties of OA.
Args:
@@ -70,6 +70,64 @@ def select_OA(optparams):
t (int): Strength of OA
"""
# S=3; % 3 level OA
#J=3;
#M=S^J; % number of experiments
#
#for k=1:J % for basic columns
# j=(S^(k-1)-1)/(S-1)+1;
# for i=1:M
# A(i,j)=mod(floor((i-1)/(S^(J-k))),S);
# end
#end
#
#for k=2:J % for non-basic columns
# j=(S^(k-1)-1)/(S-1)+1;
# for p=1:j-1
# for q=1:S-1
# A(:,(j+(p-1)*(S-1)+q))=mod((A(:,p)*q+A(:,j)),S);
# end
# end
#end
#
#
#[N,K]=size(A);
#str1=num2str(N,'%0.1d');
#str2=num2str(K,'%0.1d');
#str3=num2str(S,'%0.1d');
#TT=['OA(' str1 ',' str2 ',' str3 ',2).txt'];
#fid2=fopen(TT,'wt');
#
#for j=1:N
# for k=1:K
# fprintf(fid2,'%0.1d ',A(j,k));
# if k==K
# fprintf(fid2,'\n');
# end
# end
#end
s = 3 # Number of levels
t = 2 # Strength
# p = 2
# N = s**p # Number of experiments
# a = np.zeros((N, 4), dtype=np.int)
#
# # Construct basic columns
# for ii in range(0, p):
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
# for m in range(0, N):
# a[m, k] = np.mod(np.floor((m - 1) / (s**(p - ii))), s)
#
# # Construct non-basic columns
# for ii in range(1, p):
# k = int((s**(ii - 1) - 1) / ((s - 1) + 1))
# for jj in range(0, k - 1):
# for kk in range(0, s - 1):
# a[:, k + ((jj - 1) * (s - 1) + kk)] = np.mod(a[:, jj] * kk + a[:, k], s)
#
# print(a)
# Load the appropriate OA
if len(optparams) <= 4:
OA = np.load(os.path.join(moduledirectory, 'OA_9_4_3_2.npy'))
@@ -77,7 +135,7 @@ def select_OA(optparams):
OA = np.load(os.path.join(moduledirectory, 'OA_18_7_3_2.npy'))
else:
raise CmdInputError('Too many parameters to optimise for the available orthogonal arrays (OA). Please find and load a bigger, suitable OA.')
print(OA)
# Cut down OA columns to number of parameters to optimise
OA = OA[:, 0:len(optparams)]
@@ -87,11 +145,7 @@ def select_OA(optparams):
# Number of parameters to optimise
k = OA.shape[1]
# Number of levels
s = 3
# Strength
t = 2
return OA, N, k, s
@@ -117,8 +171,9 @@ def calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, le
levelsdiff (array): Difference used to set values in levels array
"""
# Reducing function used for calculating levels
RR = np.exp(-(i/18)**2)
# Gaussian reduction function used for calculating levels
T = 18 # Usually values between 15 - 20
RR = np.exp(-(i/T)**2)
# Calculate levels for each parameter
for p in range(0, k):
@@ -232,7 +287,7 @@ def plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit):
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Fitness value'), num='History of fitness values', figsize=(20, 10), facecolor='w', edgecolor='w')
iterations = np.arange(1, len(fitnessvalueshist) + 1)
ax.plot(iterations, fitnessvalueshist, 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist) + 1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.grid()
# Plot history of optimisation parameters
@@ -240,7 +295,7 @@ def plot_optimisation_history(fitnessvalueshist, optparamshist, optparamsinit):
for key, value in optparamshist.items():
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Iterations', ylabel='Parameter value'), num='History of ' + key + ' parameter', figsize=(20, 10), facecolor='w', edgecolor='w')
ax.plot(iterations, optparamshist[key], 'r', marker='.', ms=15, lw=1)
ax.set_xlim(1, len(fitnessvalueshist) + 1)
ax.set_xlim(1, len(fitnessvalueshist))
ax.set_ylim(optparamsinit[p][1][0], optparamsinit[p][1][1])
ax.grid()
p += 1