你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 04:26:52 +08:00
Added antenna patterns module.
这个提交包含在:
@@ -0,0 +1,180 @@
|
||||
# Copyright (C) 2016, Craig Warren
|
||||
#
|
||||
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
|
||||
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
|
||||
#
|
||||
# Please use the attribution at http://dx.doi.org/10.1016/j.sigpro.2016.04.010
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from gprMax.constants import c, z0
|
||||
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Calculate and store (in a Numpy file) field patterns from a simulation with receivers positioned in circles around an antenna.', usage='cd gprMax; python -m user_libs.antenna_patterns.initial_save outputfile')
|
||||
parser.add_argument('outputfile', help='name of gprMax output file including path')
|
||||
args = parser.parse_args()
|
||||
outputfile = args.outputfile
|
||||
|
||||
########################################
|
||||
# User configurable parameters
|
||||
|
||||
# Pattern type (E or H)
|
||||
type = 'H'
|
||||
|
||||
# Antenna (true if using full antenna model; false for a theoretical Hertzian dipole
|
||||
antenna = True
|
||||
|
||||
# Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous)
|
||||
epsr = 5
|
||||
|
||||
# Observation radii and angles
|
||||
radii = np.linspace(0.1, 0.3, 20)
|
||||
theta = np.linspace(3, 357, 60) * (180/np.pi)
|
||||
|
||||
# Scaling of time-domain field pattern values by material impedance
|
||||
impscaling = False
|
||||
|
||||
# Centre frequency of modelled antenna
|
||||
f = 1.5e9 # GSSI 1.5GHz antenna model
|
||||
|
||||
# Largest dimension of antenna transmitting element
|
||||
D = 0.060 # GSSI 1.5GHz antenna model
|
||||
|
||||
# Traces to plot for sanity checking
|
||||
traceno = np.s_[:] # All traces
|
||||
########################################
|
||||
|
||||
# Critical angle and velocity
|
||||
if epsr:
|
||||
mr = 1
|
||||
z1 = np.sqrt(mr/epsr) * z0
|
||||
v1 = c / np.sqrt(epsr)
|
||||
thetac = np.round(np.arcsin(v1/c) * (180/np.pi))
|
||||
wavelength = v1/f
|
||||
|
||||
# Print some useful information
|
||||
print('Centre frequency: {} GHz'.format(f/1e9))
|
||||
if epsr:
|
||||
print('Critical angle for Er {} is {} degrees'.format(epsr, thetac))
|
||||
print('Wavelength: {:.3f} m'.format(wavelength))
|
||||
print('Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)'.format(radii[0], radii[0]/wavelength, radii[-1], radii[-1]/wavelength))
|
||||
print('Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m'.format(0.62 * np.sqrt((D**3)/wavelength)))
|
||||
print('Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m'.format((2 * D**2)/wavelength))
|
||||
|
||||
# Load text file with coordinates of pattern origin
|
||||
origin = np.loadtxt(os.path.splitext(outputfile)[0] + '_rxsorigin.txt')
|
||||
|
||||
# Load output file and read some header information
|
||||
f = h5py.File(outputfile, 'r')
|
||||
iterations = f.attrs['Iterations']
|
||||
dt = f.attrs['dt']
|
||||
nrx = f.attrs['nrx']
|
||||
if antenna:
|
||||
nrx = nrx - 1 # Ignore first receiver point with full antenna model
|
||||
start = 2
|
||||
else:
|
||||
start = 1
|
||||
time = np.arange(0, dt * iterations, dt)
|
||||
time = time / 1E-9
|
||||
fs = 1 / dt # Sampling frequency
|
||||
|
||||
# Initialise arrays to store fields
|
||||
coords = np.zeros((nrx, 3), dtype=np.float32)
|
||||
Ex = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Ey = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Ez = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Hx = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Hy = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Hz = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Er = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Etheta = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Ephi = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Hr = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Htheta = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Hphi = np.zeros((iterations, nrx), dtype=np.float32)
|
||||
Ethetasum = np.zeros(len(theta), dtype=np.float32)
|
||||
Hthetasum = np.zeros(len(theta), dtype=np.float32)
|
||||
patternsave = np.zeros((len(radii), len(theta)), dtype=np.float32)
|
||||
|
||||
for rx in range(0, nrx):
|
||||
path = '/rxs/rx' + str(rx + start) + '/'
|
||||
position = f[path].attrs['Position'][:]
|
||||
coords[rx, :] = position - origin
|
||||
Ex[:, rx] = f[path + 'Ex'][:]
|
||||
Ey[:, rx] = f[path + 'Ey'][:]
|
||||
Ez[:, rx] = f[path + 'Ez'][:]
|
||||
Hx[:, rx] = f[path + 'Hx'][:]
|
||||
Hy[:, rx] = f[path + 'Hy'][:]
|
||||
Hz[:, rx] = f[path + 'Hz'][:]
|
||||
f.close()
|
||||
|
||||
## Plot traces for sanity checking
|
||||
#fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(num=outputfile, nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
#ax1.plot(time, Ex[:, traceno],'r', lw=2)
|
||||
#ax1.set_ylabel('$E_x$, field strength [V/m]')
|
||||
#ax3.plot(time, Ey[:, traceno],'r', lw=2)
|
||||
#ax3.set_ylabel('$E_y$, field strength [V/m]')
|
||||
#ax5.plot(time, Ez[:, traceno],'r', lw=2)
|
||||
#ax5.set_ylabel('$E_z$, field strength [V/m]')
|
||||
#ax2.plot(time, Hx[:, traceno],'b', lw=2)
|
||||
#ax2.set_ylabel('$H_x$, field strength [A/m]')
|
||||
#ax4.plot(time, Hy[:, traceno],'b', lw=2)
|
||||
#ax4.set_ylabel('$H_y$, field strength [A/m]')
|
||||
#ax6.plot(time, Hz[:, traceno],'b', lw=2)
|
||||
#ax6.set_ylabel('$H_z$, field strength [A/m]')
|
||||
## Turn on grid
|
||||
#[ax.grid() for ax in fig.axes]
|
||||
#plt.show()
|
||||
|
||||
# Calculate fields for patterns
|
||||
rxstart = 0 # Index for rx points
|
||||
for radius in range(0, len(radii)):
|
||||
index = 0
|
||||
# Observation points
|
||||
for pt in range(rxstart, rxstart + len(theta)):
|
||||
# Cartesian to spherical coordinate transform coefficients from (Kraus,1991,Electromagnetics,p.34)
|
||||
r1 = coords[pt, 0] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2)
|
||||
r2 = coords[pt, 1] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2)
|
||||
r3 = coords[pt, 2] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2)
|
||||
theta1 = (coords[pt, 0] * coords[pt, 2]) / (np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2) * np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2))
|
||||
theta2 = (coords[pt, 1] * coords[pt, 2]) / (np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2) * np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2))
|
||||
theta3 = -(np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2) / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2 + coords[pt, 2]**2))
|
||||
phi1 = -(coords[pt, 1] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2))
|
||||
phi2 = coords[pt, 0] / np.sqrt(coords[pt, 0]**2 + coords[pt, 1]**2)
|
||||
phi3 = 0
|
||||
|
||||
# Fields in spherical coordinates
|
||||
Er[:, index] = Ex[:, pt] * r1 + Ey[:, pt] * r2 + Ez[:, pt] * r3
|
||||
Etheta[:, index] = Ex[:, pt] * theta1 + Ey[:, pt] * theta2 + Ez[:, pt] * theta3
|
||||
Ephi[:, index] = Ex[:, pt] * phi1 + Ey[:, pt] * phi2 + Ez[:, pt] * phi3
|
||||
Hr[:, index] = Hx[:, pt] * r1 + Hy[:, pt] * r2 + Hz[:, pt] * r3
|
||||
Htheta[:, index] = Hx[:, pt] * theta1 + Hy[:, pt] * theta2 + Hz[:, pt] * theta3
|
||||
Hphi[:, index] = Hx[:, pt] * phi1 + Hy[:, pt] * phi2 + Hz[:, pt] * phi3
|
||||
|
||||
# Calculate metric for time-domain field pattern values
|
||||
if impscaling and coords[pt, 2] < 0:
|
||||
Ethetasum[index] = np.sum(Etheta[:, index]**2) / z1
|
||||
Hthetasum[index] = np.sum(Htheta[:, index]**2) / z1
|
||||
else:
|
||||
Ethetasum[index] = np.sum(Etheta[:, index]**2) / z0
|
||||
Hthetasum[index] = np.sum(Htheta[:, index]**2) / z0
|
||||
|
||||
index += 1
|
||||
|
||||
if type == 'H':
|
||||
# Flip H-plane patterns as rx points are written CCW but always plotted CW
|
||||
patternsave[radius, :] = Hthetasum[::-1]
|
||||
elif type == 'E':
|
||||
patternsave[radius, :] = Ethetasum
|
||||
|
||||
rxstart += len(theta)
|
||||
|
||||
# Save pattern to numpy file
|
||||
np.save(os.path.splitext(outputfile)[0], patternsave)
|
||||
print('Written Numpy file: {}.npy'.format(os.path.splitext(outputfile)[0]))
|
@@ -0,0 +1,122 @@
|
||||
# Copyright (C) 2016, Craig Warren
|
||||
#
|
||||
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
|
||||
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
|
||||
#
|
||||
# Please use the attribution at http://dx.doi.org/10.1016/j.sigpro.2016.04.010
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from gprMax.constants import c, z0
|
||||
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.', usage='cd gprMax; python -m user_libs.antenna_patterns.plot_fields numpyfile')
|
||||
parser.add_argument('numpyfile', help='name of numpy file including path')
|
||||
#parser.add_argument('hertzian', help='name of numpy file including path')
|
||||
args = parser.parse_args()
|
||||
patterns = np.load(args.numpyfile)
|
||||
#hertzian = np.load(args.hertzian)
|
||||
|
||||
########################################
|
||||
# User configurable parameters
|
||||
|
||||
# Pattern type (E or H)
|
||||
type = 'H'
|
||||
|
||||
# Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous)
|
||||
epsr = 5
|
||||
|
||||
# Observation radii and angles
|
||||
radii = np.linspace(0.1, 0.3, 20)
|
||||
theta = np.linspace(3, 357, 60)
|
||||
theta = np.deg2rad(np.append(theta, theta[0])) # Append start value to close circle
|
||||
|
||||
# Centre frequency of modelled antenna
|
||||
f = 1.5e9 # GSSI 1.5GHz antenna model
|
||||
|
||||
# Largest dimension of antenna transmitting element
|
||||
D = 0.060 # GSSI 1.5GHz antenna model
|
||||
|
||||
# Minimum value for plotting energy and ring steps (dB)
|
||||
min = -72
|
||||
step = 12
|
||||
########################################
|
||||
|
||||
# Critical angle and velocity
|
||||
if epsr:
|
||||
mr = 1
|
||||
z1 = np.sqrt(mr/epsr) * z0
|
||||
v1 = c / np.sqrt(epsr)
|
||||
thetac = np.round(np.rad2deg(np.arcsin(v1/c)))
|
||||
wavelength = v1/f
|
||||
|
||||
# Print some useful information
|
||||
print('Centre frequency: {} GHz'.format(f/1e9))
|
||||
if epsr:
|
||||
print('Critical angle for Er {} is {} degrees'.format(epsr, thetac))
|
||||
print('Wavelength: {:.3f} m'.format(wavelength))
|
||||
print('Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)'.format(radii[0], radii[0]/wavelength, radii[-1], radii[-1]/wavelength))
|
||||
print('Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m'.format(0.62 * np.sqrt((D**3)/wavelength)))
|
||||
print('Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m'.format((2 * D**2)/wavelength))
|
||||
|
||||
# Setup figure
|
||||
fig = plt.figure(num=args.numpyfile, figsize=(8, 8), facecolor='w', edgecolor='w')
|
||||
ax = plt.subplot(111, polar=True)
|
||||
cmap = plt.cm.get_cmap('rainbow')
|
||||
ax.set_prop_cycle('color', [cmap(i) for i in np.linspace(0, 1, len(radii))])
|
||||
|
||||
# Critical angle window and air/subsurface interface lines
|
||||
if epsr:
|
||||
ax.plot([0, np.deg2rad(180 - thetac)], [min, 0], color='0.7', lw=2)
|
||||
ax.plot([0, np.deg2rad(180 + thetac)], [min, 0], color='0.7', lw=2)
|
||||
ax.plot([np.deg2rad(270), np.deg2rad(90)], [0, 0], color='0.7', lw=2)
|
||||
ax.annotate('Air', xy=(np.deg2rad(270), 0), xytext=(8, 8), textcoords='offset points')
|
||||
ax.annotate('Ground', xy=(np.deg2rad(270), 0), xytext=(8, -15), textcoords='offset points')
|
||||
|
||||
# Plot patterns
|
||||
for patt in range(0, len(radii)):
|
||||
pattplot = np.append(patterns[patt, :], patterns[patt, 0]) # Append start value to close circle
|
||||
pattplot = pattplot / np.max(np.max(patterns)) # Normalise, based on set of patterns
|
||||
ax.plot(theta, 10 * np.log10(pattplot), label='{:.2f}m'.format(radii[patt]), marker='.', ms=6, lw=1.5)
|
||||
|
||||
# Add Hertzian dipole plot
|
||||
#hertzplot1 = np.append(hertzian[0, :], hertzian[0, 0]) # Append start value to close circle
|
||||
#hertzplot1 = hertzplot1 / np.max(np.max(hertzian))
|
||||
#ax.plot(theta, 10 * np.log10(hertzplot1), label='Inf. dipole, 0.1m', color='black', ls='-.', lw=3)
|
||||
#hertzplot2 = np.append(hertzian[-1, :], hertzian[-1, 0]) # Append start value to close circle
|
||||
#hertzplot2 = hertzplot2 / np.max(np.max(hertzian))
|
||||
#ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3)
|
||||
|
||||
# Theta axis options
|
||||
ax.set_theta_zero_location('N')
|
||||
ax.set_theta_direction('clockwise')
|
||||
ax.set_thetagrids(np.arange(0, 360, 30), frac=1.1)
|
||||
|
||||
# Radial axis options
|
||||
ax.set_rmax(0)
|
||||
ax.set_rlabel_position(45)
|
||||
ax.set_yticks(np.arange(min, step, step))
|
||||
yticks = ax.get_yticks().tolist()
|
||||
yticks[-1]='0 dB'
|
||||
ax.set_yticklabels(yticks)
|
||||
|
||||
# Grid and legend
|
||||
ax.grid(True)
|
||||
handles, existlabels = ax.get_legend_handles_labels()
|
||||
leg = ax.legend([handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27,-0.12), frameon=False) # Plot just first and last legend entries
|
||||
#leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False)
|
||||
[legobj.set_linewidth(2) for legobj in leg.legendHandles]
|
||||
|
||||
# Save a pdf of the plot
|
||||
savename = os.path.splitext(args.numpyfile)[0] + '.pdf'
|
||||
fig.savefig(savename, dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
#savename = os.path.splitext(args.numpyfile)[0] + '.png'
|
||||
#fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||||
|
||||
plt.show()
|
||||
|
在新工单中引用
屏蔽一个用户