你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 04:26:52 +08:00
123 行
5.2 KiB
Python
123 行
5.2 KiB
Python
# Copyright (C) 2016, Craig Warren
|
||
#
|
||
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
|
||
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
|
||
#
|
||
# Please use the attribution at http://dx.doi.org/10.1016/j.sigpro.2016.04.010
|
||
|
||
import argparse
|
||
import os
|
||
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
|
||
from gprMax.constants import c, z0
|
||
|
||
|
||
# Parse command line arguments
|
||
parser = argparse.ArgumentParser(description='Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.', usage='cd gprMax; python -m user_libs.antenna_patterns.plot_fields numpyfile')
|
||
parser.add_argument('numpyfile', help='name of numpy file including path')
|
||
#parser.add_argument('hertzian', help='name of numpy file including path')
|
||
args = parser.parse_args()
|
||
patterns = np.load(args.numpyfile)
|
||
#hertzian = np.load(args.hertzian)
|
||
|
||
########################################
|
||
# User configurable parameters
|
||
|
||
# Pattern type (E or H)
|
||
type = 'H'
|
||
|
||
# Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous)
|
||
epsr = 5
|
||
|
||
# Observation radii and angles
|
||
radii = np.linspace(0.1, 0.3, 20)
|
||
theta = np.linspace(3, 357, 60)
|
||
theta = np.deg2rad(np.append(theta, theta[0])) # Append start value to close circle
|
||
|
||
# Centre frequency of modelled antenna
|
||
f = 1.5e9 # GSSI 1.5GHz antenna model
|
||
|
||
# Largest dimension of antenna transmitting element
|
||
D = 0.060 # GSSI 1.5GHz antenna model
|
||
|
||
# Minimum value for plotting energy and ring steps (dB)
|
||
min = -72
|
||
step = 12
|
||
########################################
|
||
|
||
# Critical angle and velocity
|
||
if epsr:
|
||
mr = 1
|
||
z1 = np.sqrt(mr/epsr) * z0
|
||
v1 = c / np.sqrt(epsr)
|
||
thetac = np.round(np.rad2deg(np.arcsin(v1/c)))
|
||
wavelength = v1/f
|
||
|
||
# Print some useful information
|
||
print('Centre frequency: {} GHz'.format(f/1e9))
|
||
if epsr:
|
||
print('Critical angle for Er {} is {} degrees'.format(epsr, thetac))
|
||
print('Wavelength: {:.3f} m'.format(wavelength))
|
||
print('Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)'.format(radii[0], radii[0]/wavelength, radii[-1], radii[-1]/wavelength))
|
||
print('Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m'.format(0.62 * np.sqrt((D**3)/wavelength)))
|
||
print('Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m'.format((2 * D**2)/wavelength))
|
||
|
||
# Setup figure
|
||
fig = plt.figure(num=args.numpyfile, figsize=(8, 8), facecolor='w', edgecolor='w')
|
||
ax = plt.subplot(111, polar=True)
|
||
cmap = plt.cm.get_cmap('rainbow')
|
||
ax.set_prop_cycle('color', [cmap(i) for i in np.linspace(0, 1, len(radii))])
|
||
|
||
# Critical angle window and air/subsurface interface lines
|
||
if epsr:
|
||
ax.plot([0, np.deg2rad(180 - thetac)], [min, 0], color='0.7', lw=2)
|
||
ax.plot([0, np.deg2rad(180 + thetac)], [min, 0], color='0.7', lw=2)
|
||
ax.plot([np.deg2rad(270), np.deg2rad(90)], [0, 0], color='0.7', lw=2)
|
||
ax.annotate('Air', xy=(np.deg2rad(270), 0), xytext=(8, 8), textcoords='offset points')
|
||
ax.annotate('Ground', xy=(np.deg2rad(270), 0), xytext=(8, -15), textcoords='offset points')
|
||
|
||
# Plot patterns
|
||
for patt in range(0, len(radii)):
|
||
pattplot = np.append(patterns[patt, :], patterns[patt, 0]) # Append start value to close circle
|
||
pattplot = pattplot / np.max(np.max(patterns)) # Normalise, based on set of patterns
|
||
ax.plot(theta, 10 * np.log10(pattplot), label='{:.2f}m'.format(radii[patt]), marker='.', ms=6, lw=1.5)
|
||
|
||
# Add Hertzian dipole plot
|
||
#hertzplot1 = np.append(hertzian[0, :], hertzian[0, 0]) # Append start value to close circle
|
||
#hertzplot1 = hertzplot1 / np.max(np.max(hertzian))
|
||
#ax.plot(theta, 10 * np.log10(hertzplot1), label='Inf. dipole, 0.1m', color='black', ls='-.', lw=3)
|
||
#hertzplot2 = np.append(hertzian[-1, :], hertzian[-1, 0]) # Append start value to close circle
|
||
#hertzplot2 = hertzplot2 / np.max(np.max(hertzian))
|
||
#ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3)
|
||
|
||
# Theta axis options
|
||
ax.set_theta_zero_location('N')
|
||
ax.set_theta_direction('clockwise')
|
||
ax.set_thetagrids(np.arange(0, 360, 30), frac=1.1)
|
||
|
||
# Radial axis options
|
||
ax.set_rmax(0)
|
||
ax.set_rlabel_position(45)
|
||
ax.set_yticks(np.arange(min, step, step))
|
||
yticks = ax.get_yticks().tolist()
|
||
yticks[-1]='0 dB'
|
||
ax.set_yticklabels(yticks)
|
||
|
||
# Grid and legend
|
||
ax.grid(True)
|
||
handles, existlabels = ax.get_legend_handles_labels()
|
||
leg = ax.legend([handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27,-0.12), frameon=False) # Plot just first and last legend entries
|
||
#leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False)
|
||
[legobj.set_linewidth(2) for legobj in leg.legendHandles]
|
||
|
||
# Save a pdf of the plot
|
||
savename = os.path.splitext(args.numpyfile)[0] + '.pdf'
|
||
fig.savefig(savename, dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||
#savename = os.path.splitext(args.numpyfile)[0] + '.png'
|
||
#fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
||
|
||
plt.show()
|
||
|