你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 20:46:52 +08:00
Moved run_model function into its own separate module.
这个提交包含在:
378
gprMax/gprMax.py
378
gprMax/gprMax.py
@@ -21,33 +21,16 @@
|
||||
import argparse
|
||||
import datetime
|
||||
from enum import Enum
|
||||
import itertools
|
||||
import os
|
||||
import psutil
|
||||
import sys
|
||||
from time import perf_counter
|
||||
|
||||
from colorama import init, Fore, Style
|
||||
init()
|
||||
import numpy as np
|
||||
from terminaltables import AsciiTable
|
||||
from tqdm import tqdm
|
||||
|
||||
from ._version import __version__
|
||||
from .constants import c, e0, m0, z0
|
||||
from .exceptions import GeneralError
|
||||
from .fields_outputs import write_hdf5_outputfile
|
||||
from .fields_update import update_electric, update_magnetic, update_electric_dispersive_multipole_A, update_electric_dispersive_multipole_B, update_electric_dispersive_1pole_A, update_electric_dispersive_1pole_B
|
||||
from .grid import FDTDGrid, dispersion_analysis
|
||||
from .input_cmds_geometry import process_geometrycmds
|
||||
from .input_cmds_file import process_python_include_code, write_processed_file, check_cmd_names
|
||||
from .input_cmds_multiuse import process_multicmds
|
||||
from .input_cmds_singleuse import process_singlecmds
|
||||
from .materials import Material, process_materials
|
||||
from .pml import PML, build_pmls
|
||||
from .receivers import store_outputs
|
||||
from .utilities import logo, human_size, get_host_info, get_terminal_width, round_value
|
||||
from .yee_cell_build import build_electric_components, build_magnetic_components
|
||||
from gprMax._version import __version__
|
||||
from gprMax.constants import c, e0, m0, z0
|
||||
from gprMax.exceptions import GeneralError
|
||||
from gprMax.model_build_run import run_model
|
||||
from gprMax.utilities import logo, human_size, get_host_info, get_terminal_width
|
||||
|
||||
|
||||
def main():
|
||||
@@ -57,7 +40,7 @@ def main():
|
||||
logo(__version__ + ' (Bowmore)')
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(prog='gprMax')
|
||||
parser = argparse.ArgumentParser(prog='gprMax', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('inputfile', help='path to, and name of inputfile')
|
||||
parser.add_argument('-n', default=1, type=int, help='number of times to run the input file, e.g. to create a B-scan')
|
||||
parser.add_argument('-mpi', action='store_true', default=False, help='flag to switch on MPI task farm')
|
||||
@@ -114,34 +97,40 @@ def run_main(args):
|
||||
# Create a separate namespace that users can access in any Python code blocks in the input file
|
||||
usernamespace = {'c': c, 'e0': e0, 'm0': m0, 'z0': z0, 'number_model_runs': numbermodelruns, 'input_directory': inputdirectory}
|
||||
|
||||
# Process for Taguchi optimisation
|
||||
if args.opt_taguchi:
|
||||
#######################################
|
||||
# Process for benchmarking simulation #
|
||||
#######################################
|
||||
if args.benchmark:
|
||||
run_benchmark_sim(args, inputfile, usernamespace)
|
||||
|
||||
####################################################
|
||||
# Process for simulation with Taguchi optimisation #
|
||||
####################################################
|
||||
elif args.opt_taguchi:
|
||||
if args.benchmark:
|
||||
raise GeneralError('Taguchi optimisation should not be used with benchmarking mode')
|
||||
from gprMax.optimisation_taguchi import run_opt_sim
|
||||
run_opt_sim(args, numbermodelruns, inputfile, usernamespace)
|
||||
|
||||
# Process for benchmarking simulation
|
||||
elif args.benchmark:
|
||||
run_benchmark_sim(args, inputfile, usernamespace)
|
||||
|
||||
# Process for standard simulation
|
||||
################################################
|
||||
# Process for standard simulation (CPU or GPU) #
|
||||
################################################
|
||||
else:
|
||||
# Mixed mode MPI/OpenMP - MPI task farm for models with each model parallelised with OpenMP
|
||||
# Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
||||
if args.mpi:
|
||||
if args.benchmark:
|
||||
raise GeneralError('MPI should not be used with benchmarking mode')
|
||||
if numbermodelruns == 1:
|
||||
raise GeneralError('MPI is not beneficial when there is only one model to run')
|
||||
run_mpi_sim(args, numbermodelruns, inputfile, usernamespace)
|
||||
# Standard behaviour - part of a job array on Open Grid Scheduler/Grid Engine with each model parallelised with OpenMP
|
||||
|
||||
# Standard behaviour - part of a job array on Open Grid Scheduler/Grid Engine with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
||||
elif args.taskid:
|
||||
if args.benchmark:
|
||||
raise GeneralError('A job array should not be used with benchmarking mode')
|
||||
if numbermodelruns == 1:
|
||||
raise GeneralError('A job array is not beneficial when there is only one model to run')
|
||||
run_job_array_sim(args, numbermodelruns, inputfile, usernamespace)
|
||||
# Standard behaviour - models run serially with each model parallelised with OpenMP
|
||||
|
||||
# Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
||||
else:
|
||||
run_std_sim(args, numbermodelruns, inputfile, usernamespace)
|
||||
|
||||
@@ -158,17 +147,17 @@ def run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None)
|
||||
"""
|
||||
|
||||
tsimstart = perf_counter()
|
||||
for modelrun in range(1, numbermodelruns + 1):
|
||||
for currentmodelrun in range(1, numbermodelruns + 1):
|
||||
if optparams: # If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
|
||||
tmp = {}
|
||||
tmp.update((key, value[modelrun - 1]) for key, value in optparams.items())
|
||||
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
|
||||
modelusernamespace = usernamespace.copy()
|
||||
modelusernamespace.update({'optparams': tmp})
|
||||
else:
|
||||
modelusernamespace = usernamespace
|
||||
run_model(args, modelrun, numbermodelruns, inputfile, modelusernamespace)
|
||||
run_model(args, currentmodelrun, numbermodelruns, inputfile, modelusernamespace)
|
||||
tsimend = perf_counter()
|
||||
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart)))
|
||||
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
|
||||
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
|
||||
|
||||
|
||||
@@ -183,19 +172,19 @@ def run_job_array_sim(args, numbermodelruns, inputfile, usernamespace, optparams
|
||||
optparams (dict): Optional argument. For Taguchi optimisation it provides the parameters to optimise and their values.
|
||||
"""
|
||||
|
||||
modelrun = args.taskid
|
||||
currentmodelrun = args.taskid
|
||||
|
||||
tsimstart = perf_counter()
|
||||
if optparams: # If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
|
||||
tmp = {}
|
||||
tmp.update((key, value[modelrun - 1]) for key, value in optparams.items())
|
||||
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
|
||||
modelusernamespace = usernamespace.copy()
|
||||
modelusernamespace.update({'optparams': tmp})
|
||||
else:
|
||||
modelusernamespace = usernamespace
|
||||
run_model(args, modelrun, numbermodelruns, inputfile, modelusernamespace)
|
||||
run_model(args, currentmodelrun, numbermodelruns, inputfile, modelusernamespace)
|
||||
tsimend = perf_counter()
|
||||
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart)))
|
||||
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
|
||||
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
|
||||
|
||||
|
||||
@@ -226,10 +215,10 @@ def run_benchmark_sim(args, inputfile, usernamespace):
|
||||
numbermodelruns = len(threads)
|
||||
usernamespace['number_model_runs'] = numbermodelruns
|
||||
|
||||
for modelrun in range(1, numbermodelruns + 1):
|
||||
os.environ['OMP_NUM_THREADS'] = str(threads[modelrun - 1])
|
||||
tsolve = run_model(args, modelrun, numbermodelruns, inputfile, usernamespace)
|
||||
benchtimes[modelrun - 1] = tsolve
|
||||
for currentmodelrun in range(1, numbermodelruns + 1):
|
||||
os.environ['OMP_NUM_THREADS'] = str(threads[currentmodelrun - 1])
|
||||
tsolve = run_model(args, currentmodelrun, numbermodelruns, inputfile, usernamespace)
|
||||
benchtimes[currentmodelrun - 1] = tsolve
|
||||
|
||||
# Save number of threads and benchmarking times to NumPy archive
|
||||
threads = np.array(threads)
|
||||
@@ -266,7 +255,7 @@ def run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None)
|
||||
|
||||
# Master process
|
||||
if rank == 0:
|
||||
modelrun = 1
|
||||
currentmodelrun = 1
|
||||
numworkers = size - 1
|
||||
closedworkers = 0
|
||||
print('Master: PID {} on {} using {} workers.'.format(os.getpid(), name, numworkers))
|
||||
@@ -276,10 +265,10 @@ def run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None)
|
||||
tag = status.Get_tag()
|
||||
|
||||
if tag == tags.READY.value: # Worker is ready, so send it a task
|
||||
if modelrun < numbermodelruns + 1:
|
||||
comm.send(modelrun, dest=source, tag=tags.START.value)
|
||||
print('Master: sending model {} to worker {}.'.format(modelrun, source))
|
||||
modelrun += 1
|
||||
if currentmodelrun < numbermodelruns + 1:
|
||||
comm.send(currentmodelrun, dest=source, tag=tags.START.value)
|
||||
print('Master: sending model {} to worker {}.'.format(currentmodelrun, source))
|
||||
currentmodelrun += 1
|
||||
else:
|
||||
comm.send(None, dest=source, tag=tags.EXIT.value)
|
||||
|
||||
@@ -295,20 +284,20 @@ def run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None)
|
||||
print('Worker {}: PID {} on {}.'.format(rank, os.getpid(), name))
|
||||
while True:
|
||||
comm.send(None, dest=0, tag=tags.READY.value)
|
||||
modelrun = comm.recv(source=0, tag=MPI.ANY_TAG, status=status) # Receive a model number to run from the master
|
||||
currentmodelrun = comm.recv(source=0, tag=MPI.ANY_TAG, status=status) # Receive a model number to run from the master
|
||||
tag = status.Get_tag()
|
||||
|
||||
# Run a model
|
||||
if tag == tags.START.value:
|
||||
if optparams: # If Taguchi optimistaion, add specific value for each parameter to optimise for each experiment to user accessible namespace
|
||||
tmp = {}
|
||||
tmp.update((key, value[modelrun - 1]) for key, value in optparams.items())
|
||||
tmp.update((key, value[currentmodelrun - 1]) for key, value in optparams.items())
|
||||
modelusernamespace = usernamespace.copy()
|
||||
modelusernamespace.update({'optparams': tmp})
|
||||
else:
|
||||
modelusernamespace = usernamespace
|
||||
|
||||
run_model(args, modelrun, numbermodelruns, inputfile, modelusernamespace)
|
||||
run_model(args, currentmodelrun, numbermodelruns, inputfile, modelusernamespace)
|
||||
comm.send(None, dest=0, tag=tags.DONE.value)
|
||||
|
||||
elif tag == tags.EXIT.value:
|
||||
@@ -317,282 +306,5 @@ def run_mpi_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None)
|
||||
comm.send(None, dest=0, tag=tags.EXIT.value)
|
||||
|
||||
tsimend = perf_counter()
|
||||
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart)))
|
||||
simcompletestr = '\n=== Simulation completed in [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=tsimend - tsimstart))
|
||||
print('{} {}\n'.format(simcompletestr, '=' * (get_terminal_width() - 1 - len(simcompletestr))))
|
||||
|
||||
|
||||
def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
|
||||
"""Runs a model - processes the input file; builds the Yee cells; calculates update coefficients; runs main FDTD loop.
|
||||
|
||||
Args:
|
||||
args (dict): Namespace with command line arguments
|
||||
modelrun (int): Current model run number.
|
||||
numbermodelruns (int): Total number of model runs.
|
||||
inputfile (str): Name of the input file to open.
|
||||
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
|
||||
|
||||
Returns:
|
||||
tsolve (int): Length of time (seconds) of main FDTD calculations
|
||||
"""
|
||||
|
||||
# Monitor memory usage
|
||||
p = psutil.Process()
|
||||
|
||||
# Declare variable to hold FDTDGrid class
|
||||
global G
|
||||
|
||||
# Normal model reading/building process; bypassed if geometry information to be reused
|
||||
if 'G' not in globals():
|
||||
inputfilestr = '\n--- Model {}/{}, input file: {}'.format(modelrun, numbermodelruns, inputfile)
|
||||
print(Fore.GREEN + '{} {}\n'.format(inputfilestr, '-' * (get_terminal_width() - 1 - len(inputfilestr))) + Style.RESET_ALL)
|
||||
|
||||
# Add the current model run to namespace that can be accessed by user in any Python code blocks in input file
|
||||
usernamespace['current_model_run'] = modelrun
|
||||
|
||||
# Read input file and process any Python or include commands
|
||||
processedlines = process_python_include_code(inputfile, usernamespace)
|
||||
|
||||
# Print constants/variables in user-accessable namespace
|
||||
uservars = ''
|
||||
for key, value in sorted(usernamespace.items()):
|
||||
if key != '__builtins__':
|
||||
uservars += '{}: {}, '.format(key, value)
|
||||
print('Constants/variables used/available for Python scripting: {{{}}}\n'.format(uservars[:-2]))
|
||||
|
||||
# Write a file containing the input commands after Python or include commands have been processed
|
||||
if args.write_processed:
|
||||
write_processed_file(inputfile, modelrun, numbermodelruns, processedlines)
|
||||
|
||||
# Check validity of command names and that essential commands are present
|
||||
singlecmds, multicmds, geometry = check_cmd_names(processedlines)
|
||||
|
||||
# Initialise an instance of the FDTDGrid class
|
||||
G = FDTDGrid()
|
||||
G.inputfilename = os.path.split(inputfile)[1]
|
||||
G.inputdirectory = os.path.dirname(os.path.abspath(inputfile))
|
||||
|
||||
# Create built-in materials
|
||||
m = Material(0, 'pec')
|
||||
m.se = float('inf')
|
||||
m.type = 'builtin'
|
||||
m.averagable = False
|
||||
G.materials.append(m)
|
||||
m = Material(1, 'free_space')
|
||||
m.type = 'builtin'
|
||||
G.materials.append(m)
|
||||
|
||||
# Process parameters for commands that can only occur once in the model
|
||||
process_singlecmds(singlecmds, G)
|
||||
|
||||
# Process parameters for commands that can occur multiple times in the model
|
||||
print()
|
||||
process_multicmds(multicmds, G)
|
||||
|
||||
# Initialise an array for volumetric material IDs (solid), boolean arrays for specifying materials not to be averaged (rigid),
|
||||
# an array for cell edge IDs (ID)
|
||||
G.initialise_geometry_arrays()
|
||||
|
||||
# Initialise arrays for the field components
|
||||
G.initialise_field_arrays()
|
||||
|
||||
# Process geometry commands in the order they were given
|
||||
process_geometrycmds(geometry, G)
|
||||
|
||||
# Build the PMLs and calculate initial coefficients
|
||||
print()
|
||||
if all(value == 0 for value in G.pmlthickness.values()):
|
||||
if G.messages:
|
||||
print('PML boundaries: switched off')
|
||||
pass # If all the PMLs are switched off don't need to build anything
|
||||
else:
|
||||
if G.messages:
|
||||
if all(value == G.pmlthickness['x0'] for value in G.pmlthickness.values()):
|
||||
pmlinfo = str(G.pmlthickness['x0']) + ' cells'
|
||||
else:
|
||||
pmlinfo = ''
|
||||
for key, value in G.pmlthickness.items():
|
||||
pmlinfo += '{}: {} cells, '.format(key, value)
|
||||
pmlinfo = pmlinfo[:-2]
|
||||
print('PML boundaries: {}'.format(pmlinfo))
|
||||
pbar = tqdm(total=sum(1 for value in G.pmlthickness.values() if value > 0), desc='Building PML boundaries', ncols=get_terminal_width() - 1, file=sys.stdout, disable=G.tqdmdisable)
|
||||
build_pmls(G, pbar)
|
||||
pbar.close()
|
||||
|
||||
# Build the model, i.e. set the material properties (ID) for every edge of every Yee cell
|
||||
print()
|
||||
pbar = tqdm(total=2, desc='Building main grid', ncols=get_terminal_width() - 1, file=sys.stdout, disable=G.tqdmdisable)
|
||||
build_electric_components(G.solid, G.rigidE, G.ID, G)
|
||||
pbar.update()
|
||||
build_magnetic_components(G.solid, G.rigidH, G.ID, G)
|
||||
pbar.update()
|
||||
pbar.close()
|
||||
|
||||
# Process any voltage sources (that have resistance) to create a new material at the source location
|
||||
for voltagesource in G.voltagesources:
|
||||
voltagesource.create_material(G)
|
||||
|
||||
# Initialise arrays of update coefficients to pass to update functions
|
||||
G.initialise_std_update_coeff_arrays()
|
||||
|
||||
# Initialise arrays of update coefficients and temporary values if there are any dispersive materials
|
||||
if Material.maxpoles != 0:
|
||||
G.initialise_dispersive_arrays()
|
||||
|
||||
# Process complete list of materials - calculate update coefficients, store in arrays, and build text list of materials/properties
|
||||
materialsdata = process_materials(G)
|
||||
if G.messages:
|
||||
materialstable = AsciiTable(materialsdata)
|
||||
materialstable.outer_border = False
|
||||
materialstable.justify_columns[0] = 'right'
|
||||
print(materialstable.table)
|
||||
|
||||
# Check to see if numerical dispersion might be a problem
|
||||
results = dispersion_analysis(G)
|
||||
if all(value == False for value in results.values()):
|
||||
print('\nNumerical dispersion analysis: No waveform present in model')
|
||||
elif results['N'] < G.mingridsampling:
|
||||
raise GeneralError("Non-physical wave propagation: Material '{}' has a wavelength sampled by {} cells, less than required minimum for physical wave propagation. Maximum significant frequency estimated as {:g}Hz".format(results['material'].ID, results['N'], results['maxfreq']))
|
||||
elif results['deltavp'] and np.abs(results['deltavp']) > G.maxnumericaldisp and G.messages:
|
||||
print(Fore.RED + "\nWARNING: Potentially significant numerical dispersion. Estimated largest physical phase-velocity error is {:.2f}% in material '{}' whose wavelength is sampled by {} cells. Maximum significant frequency estimated as {:g}Hz".format(results['deltavp'], results['material'].ID, results['N'], results['maxfreq']) + Style.RESET_ALL)
|
||||
elif results['deltavp'] and G.messages:
|
||||
print("\nNumerical dispersion analysis: estimated largest physical phase-velocity error is {:.2f}% in material '{}' whose wavelength is sampled by {} cells. Maximum significant frequency estimated as {:g}Hz".format(results['deltavp'], results['material'].ID, results['N'], results['maxfreq']))
|
||||
|
||||
# If geometry information to be reused between model runs
|
||||
else:
|
||||
inputfilestr = '\n--- Model {}/{}, input file not re-processed, i.e. geometry fixed: {}'.format(modelrun, numbermodelruns, inputfile)
|
||||
print(Fore.GREEN + '{} {}\n'.format(inputfilestr, '-' * (get_terminal_width() - 1 - len(inputfilestr))) + Style.RESET_ALL)
|
||||
|
||||
# Clear arrays for field components
|
||||
G.initialise_field_arrays()
|
||||
|
||||
# Clear arrays for fields in PML
|
||||
for pml in G.pmls:
|
||||
pml.initialise_field_arrays()
|
||||
|
||||
# Adjust position of simple sources and receivers if required
|
||||
if G.srcsteps[0] != 0 or G.srcsteps[1] != 0 or G.srcsteps[2] != 0:
|
||||
for source in itertools.chain(G.hertziandipoles, G.magneticdipoles):
|
||||
if modelrun == 1:
|
||||
if source.xcoord + G.srcsteps[0] * (numbermodelruns - 1) < 0 or source.xcoord + G.srcsteps[0] * (numbermodelruns - 1) > G.nx or source.ycoord + G.srcsteps[1] * (numbermodelruns - 1) < 0 or source.ycoord + G.srcsteps[1] * (numbermodelruns - 1) > G.ny or source.zcoord + G.srcsteps[2] * (numbermodelruns - 1) < 0 or source.zcoord + G.srcsteps[2] * (numbermodelruns - 1) > G.nz:
|
||||
raise GeneralError('Source(s) will be stepped to a position outside the domain.')
|
||||
source.xcoord = source.xcoordorigin + (modelrun - 1) * G.srcsteps[0]
|
||||
source.ycoord = source.ycoordorigin + (modelrun - 1) * G.srcsteps[1]
|
||||
source.zcoord = source.zcoordorigin + (modelrun - 1) * G.srcsteps[2]
|
||||
if G.rxsteps[0] != 0 or G.rxsteps[1] != 0 or G.rxsteps[2] != 0:
|
||||
for receiver in G.rxs:
|
||||
if modelrun == 1:
|
||||
if receiver.xcoord + G.rxsteps[0] * (numbermodelruns - 1) < 0 or receiver.xcoord + G.rxsteps[0] * (numbermodelruns - 1) > G.nx or receiver.ycoord + G.rxsteps[1] * (numbermodelruns - 1) < 0 or receiver.ycoord + G.rxsteps[1] * (numbermodelruns - 1) > G.ny or receiver.zcoord + G.rxsteps[2] * (numbermodelruns - 1) < 0 or receiver.zcoord + G.rxsteps[2] * (numbermodelruns - 1) > G.nz:
|
||||
raise GeneralError('Receiver(s) will be stepped to a position outside the domain.')
|
||||
receiver.xcoord = receiver.xcoordorigin + (modelrun - 1) * G.rxsteps[0]
|
||||
receiver.ycoord = receiver.ycoordorigin + (modelrun - 1) * G.rxsteps[1]
|
||||
receiver.zcoord = receiver.zcoordorigin + (modelrun - 1) * G.rxsteps[2]
|
||||
|
||||
# Write files for any geometry views and geometry object outputs
|
||||
if not (G.geometryviews or G.geometryobjectswrite) and args.geometry_only:
|
||||
print(Fore.RED + '\nWARNING: No geometry views or geometry objects to output found.' + Style.RESET_ALL)
|
||||
if G.geometryviews:
|
||||
print()
|
||||
for i, geometryview in enumerate(G.geometryviews):
|
||||
geometryview.set_filename(modelrun, numbermodelruns, G)
|
||||
pbar = tqdm(total=geometryview.datawritesize, unit='byte', unit_scale=True, desc='Writing geometry view file {}/{}, {}'.format(i + 1, len(G.geometryviews), os.path.split(geometryview.filename)[1]), ncols=get_terminal_width() - 1, file=sys.stdout, disable=G.tqdmdisable)
|
||||
geometryview.write_vtk(modelrun, numbermodelruns, G, pbar)
|
||||
pbar.close()
|
||||
if G.geometryobjectswrite:
|
||||
for i, geometryobject in enumerate(G.geometryobjectswrite):
|
||||
pbar = tqdm(total=geometryobject.datawritesize, unit='byte', unit_scale=True, desc='Writing geometry object file {}/{}, {}'.format(i + 1, len(G.geometryobjectswrite), os.path.split(geometryobject.filename)[1]), ncols=get_terminal_width() - 1, file=sys.stdout, disable=G.tqdmdisable)
|
||||
geometryobject.write_hdf5(G, pbar)
|
||||
pbar.close()
|
||||
|
||||
# Run simulation (if not doing geometry only)
|
||||
if not args.geometry_only:
|
||||
|
||||
# Prepare any snapshot files
|
||||
for snapshot in G.snapshots:
|
||||
snapshot.prepare_vtk_imagedata(modelrun, numbermodelruns, G)
|
||||
|
||||
# Output filename
|
||||
inputfileparts = os.path.splitext(inputfile)
|
||||
if numbermodelruns == 1:
|
||||
outputfile = inputfileparts[0] + '.out'
|
||||
else:
|
||||
outputfile = inputfileparts[0] + str(modelrun) + '.out'
|
||||
print('\nOutput file: {}\n'.format(outputfile))
|
||||
|
||||
####################################
|
||||
# Start - Main FDTD calculations #
|
||||
####################################
|
||||
tsolvestart = perf_counter()
|
||||
|
||||
# Absolute time
|
||||
abstime = 0
|
||||
|
||||
for timestep in tqdm(range(G.iterations), desc='Running simulation, model ' + str(modelrun) + '/' + str(numbermodelruns), ncols=get_terminal_width() - 1, file=sys.stdout, disable=G.tqdmdisable):
|
||||
# Store field component values for every receiver and transmission line
|
||||
store_outputs(timestep, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G)
|
||||
|
||||
# Write any snapshots to file
|
||||
for i, snap in enumerate(G.snapshots):
|
||||
if snap.time == timestep + 1:
|
||||
snapiters = 36 * (((snap.xf - snap.xs) / snap.dx) * ((snap.yf - snap.ys) / snap.dy) * ((snap.zf - snap.zs) / snap.dz))
|
||||
pbar = tqdm(total=snapiters, leave=False, unit='byte', unit_scale=True, desc=' Writing snapshot file {} of {}, {}'.format(i + 1, len(G.snapshots), os.path.split(snap.filename)[1]), ncols=get_terminal_width() - 1, file=sys.stdout, disable=G.tqdmdisable)
|
||||
snap.write_vtk_imagedata(G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G, pbar)
|
||||
pbar.close()
|
||||
|
||||
# Update electric field components
|
||||
if Material.maxpoles == 0: # All materials are non-dispersive so do standard update
|
||||
update_electric(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||||
elif Material.maxpoles == 1: # If there are any dispersive materials do 1st part of dispersive update (it is split into two parts as it requires present and updated electric field values).
|
||||
update_electric_dispersive_1pole_A(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsE, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||||
elif Material.maxpoles > 1:
|
||||
update_electric_dispersive_multipole_A(G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles, G.updatecoeffsE, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||||
|
||||
# Update electric field components with the PML correction
|
||||
for pml in G.pmls:
|
||||
pml.update_electric(G)
|
||||
|
||||
# Update electric field components from sources (update any Hertzian dipole sources last)
|
||||
for source in G.voltagesources + G.transmissionlines + G.hertziandipoles:
|
||||
source.update_electric(abstime, G.updatecoeffsE, G.ID, G.Ex, G.Ey, G.Ez, G)
|
||||
|
||||
# If there are any dispersive materials do 2nd part of dispersive update (it is split into two parts as it requires present and updated electric field values). Therefore it can only be completely updated after the electric field has been updated by the PML and source updates.
|
||||
if Material.maxpoles == 1:
|
||||
update_electric_dispersive_1pole_B(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez)
|
||||
elif Material.maxpoles > 1:
|
||||
update_electric_dispersive_multipole_B(G.nx, G.ny, G.nz, G.nthreads, Material.maxpoles, G.updatecoeffsdispersive, G.ID, G.Tx, G.Ty, G.Tz, G.Ex, G.Ey, G.Ez)
|
||||
|
||||
# Increment absolute time value
|
||||
abstime += 0.5 * G.dt
|
||||
|
||||
# Update magnetic field components
|
||||
update_magnetic(G.nx, G.ny, G.nz, G.nthreads, G.updatecoeffsH, G.ID, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz)
|
||||
|
||||
# Update magnetic field components with the PML correction
|
||||
for pml in G.pmls:
|
||||
pml.update_magnetic(G)
|
||||
|
||||
# Update magnetic field components from sources
|
||||
for source in G.transmissionlines + G.magneticdipoles:
|
||||
source.update_magnetic(abstime, G.updatecoeffsH, G.ID, G.Hx, G.Hy, G.Hz, G)
|
||||
|
||||
# Increment absolute time value
|
||||
abstime += 0.5 * G.dt
|
||||
|
||||
tsolve = int(perf_counter() - tsolvestart)
|
||||
|
||||
# Write an output file in HDF5 format
|
||||
write_hdf5_outputfile(outputfile, G.Ex, G.Ey, G.Ez, G.Hx, G.Hy, G.Hz, G)
|
||||
|
||||
##################################
|
||||
# End - Main FDTD calculations #
|
||||
##################################
|
||||
|
||||
if G.messages:
|
||||
print('Memory (RAM) used: ~{}'.format(human_size(p.memory_info().rss)))
|
||||
|
||||
# If geometry information to be reused between model runs then FDTDGrid class instance must be global so that it persists
|
||||
if not args.geometry_fixed:
|
||||
del G
|
||||
|
||||
# Return time to complete solving if in benchmarking mode
|
||||
if args.benchmark:
|
||||
return tsolve
|
||||
|
在新工单中引用
屏蔽一个用户