Remove startmaterialnum

这个提交包含在:
Craig Warren
2023-06-14 11:58:28 +01:00
父节点 e39e719925
当前提交 a3551675ee

查看文件

@@ -241,9 +241,7 @@ class PeplinskiSoil:
self.rb = bulkdensity
self.rs = sandpartdensity
self.mu = watervolfraction
self.startmaterialnum = 0 #This is not used anymore and code that uses it can be removed
# store all of the material IDs in a list instead of storing only the first number of the material
# and assume that all must be sequentially numbered. This allows for more general mixing models
# Store all of the material IDs which allows for more general mixing models.
self.matID = []
def calculate_properties(self, nbins, G):
@@ -278,11 +276,9 @@ class PeplinskiSoil:
# values. Changed to make sure mid points are contained completely within the ranges.
# The limiting values of the ranges are not included in this.
#mubins = np.linspace(self.mu[0], self.mu[1], nbins)
mubins = np.linspace(self.mu[0], self.mu[1], nbins + 1)
# Generate a range of volumetric water fraction values the mid-point of
# each bin to make materials from
#mumaterials = mubins + (mubins[1] - mubins[0]) / 2
mumaterials = 0.5 * (mubins[1:nbins+1] + mubins[0:nbins])
# Create an iterator
@@ -306,10 +302,7 @@ class PeplinskiSoil:
material = next((x for x in G.materials if x.ID == requiredID), None)
if muiter.index == 0:
if material:
self.startmaterialnum = material.numID
self.matID.append(material.numID)
else:
self.startmaterialnum = len(G.materials)
self.matID.append(material.numID)
if not material:
m = DispersiveMaterial(len(G.materials), requiredID)
m.type = 'debye'
@@ -328,16 +321,18 @@ class PeplinskiSoil:
class RangeMaterial:
"""Material objects defined by a given range of their parameters to be used for
factal spatial disttibutions.
"""Material objects defined by a given range of their parameters to be used
for fractal spatial distributions.
"""
def __init__(self, ID, er_range, se_range, mr_range, sm_range):
"""
Args:
ID: string for name of the material range.
er_range: tuple of floats for relative permittivity range of the materials.
se_range: tuple of floats for electric conductivity range of the materials.
er_range: tuple of floats for relative permittivity range of the
materials.
se_range: tuple of floats for electric conductivity range of the
materials.
mr_range: tuple of floats for magnetic permeability of materials.
sm_range: tuple of floats for magnetic loss range of materials.
"""
@@ -347,9 +342,7 @@ class RangeMaterial:
self.sig = se_range
self.mu = mr_range
self.ro = sm_range
self.startmaterialnum = 0 #This is not really needed anymore and code that uses it can be removed.
# store all of the material IDs in a list instead of storing only the first number of the material
# and assume that all must be sequentially numbered. This allows for more general mixing models
# Store all of the material IDs which allows for more general mixing models.
self.matID = []
def calculate_properties(self, nbins, G):
@@ -365,7 +358,6 @@ class RangeMaterial:
# Generate a range of relative permittivity values the mid-point of
# each bin to make materials from
#ermaterials = erbins + np.abs((erbins[1] - erbins[0])) / 2
ermaterials = 0.5 * (erbins[1:nbins+1] + erbins[0:nbins])
# Generate a set of conductivity bins based on the given range
@@ -373,7 +365,6 @@ class RangeMaterial:
# Generate a range of conductivity values the mid-point of
# each bin to make materials from
#sigmamaterials = sigmabins + (sigmabins[1] - sigmabins[0]) / 2
sigmamaterials = 0.5 * (sigmabins[1:nbins+1] + sigmabins[0:nbins])
# Generate a set of magnetic permeability bins based on the given range
@@ -381,7 +372,6 @@ class RangeMaterial:
# Generate a range of magnetic permeability values the mid-point of
# each bin to make materials from
#mumaterials = mubins + np.abs((mubins[1] - mubins[0])) / 2
mumaterials = 0.5 * (mubins[1:nbins+1] + mubins[0:nbins])
# Generate a set of magnetic loss bins based on the given range
@@ -389,10 +379,8 @@ class RangeMaterial:
# Generate a range of magnetic loss values the mid-point of each bin to
# make materials from
#romaterials = robins + np.abs((robins[1] - robins[0])) / 2
romaterials = 0.5 * (robins[1:nbins+1] + robins[0:nbins])
# Iterate over the bins
for iter in np.arange(nbins):
# Relative permittivity
@@ -409,10 +397,7 @@ class RangeMaterial:
material = next((x for x in G.materials if x.ID == requiredID), None)
if iter == 0:
if material:
self.startmaterialnum = material.numID
self.matID.append(material.numID)
else:
self.startmaterialnum = len(G.materials)
if not material:
m = Material(len(G.materials), requiredID)
m.type = ''
@@ -426,28 +411,23 @@ class RangeMaterial:
class ListMaterial:
"""A list of predefined materials to be used for
factal spatial disttibutions. This command does not create new materials but collects them to be used in a
stochastic distribution by a fractal box.
"""A list of predefined materials to be used for fractal spatial distributions.
This class does not create new materials but collects them to be used
in a stochastic distribution by a fractal box.
"""
def __init__(self, ID, listofmaterials):
"""
Args:
ID: string for name of the material list.
listofmaterials: A list of material IDs.
listofmaterials: list of material IDs.
"""
self.ID = ID
self.mat = listofmaterials
self.startmaterialnum = 0 #This is not really needed anymore
# store all of the material IDs in a list instead of storing only the first number of the material
# and assume that all must be sequentially numbered. This allows for more general mixing models
# this is important here as this model assumes predefined materials.
# Store all of the material IDs which allows for more general mixing models.
self.matID = []
def calculate_properties(self, nbins, G):
"""Calculates the properties of the materials.
@@ -458,24 +438,10 @@ class ListMaterial:
# Iterate over the bins
for iter in np.arange(nbins):
#requiredID = '|{:}_in_{:}|'.format((self.mat[iter]),(self.ID))
requiredID = self.mat[iter]
# Check if the material already exists before creating a new one
material = next((x for x in G.materials if x.ID == requiredID), None)
self.matID.append(material.numID)
#if iter == 0:
# if material:
# self.startmaterialnum = material.numID
# else:
# self.startmaterialnum = len(G.materials)
#if not material:
# temp = next((x for x in G.materials if x.ID == self.mat[iter]), None)
# m = copy.deepcopy(temp) #This needs to import copy in order to work
# m.ID = requiredID
# m.numID = len(G.materials)
# G.materials.append(m)
if not material:
logger.exception(self.__str__() + f' material(s) {material} do not exist')