xdmf and hdf5 geometry
这个提交包含在:
jasminium
2016-05-11 16:30:32 +01:00
当前提交 9d038a5557
共有 2 个文件被更改,包括 86 次插入56 次删除

查看文件

@@ -24,55 +24,75 @@ import matplotlib.pyplot as plt
from gprMax.exceptions import CmdInputError
def make_plot(filename, output):
"""Plots a B-scan image.
def get_output_data(filename, rxnumber, rxcomponent):
"""Gets B-scan output data from a model.
Args:
Args:
filename (string): Filename (including path) of output file.
output (string): Field/current component to plot.
rxnumber (int): Receiver output number.
rxcomponent (str): Receiver output field/current component.
Returns:
outputdata (array): Array of A-scans, i.e. B-scan data.
dt (float): Temporal resolution of the model.
"""
# Open output file and read some attributes
f = h5py.File(filename, 'r')
nrx = f.attrs['nrx']
dt = f.attrs['dt']
# Check there are any receivers
if nrx == 0:
raise CmdInputError('No receivers found in {}'.format(filename))
for rx in range(1, nrx + 1):
path = '/rxs/rx' + str(rx) + '/'
availableoutputs = list(f[path].keys())
path = '/rxs/rx' + str(rxnumber) + '/'
availableoutputs = list(f[path].keys())
# Check if requested output is in file
if output not in availableoutputs:
raise CmdInputError('{} output requested to plot, but the available output for receiver 1 is {}'.format(output, ', '.join(availableoutputs)))
# Check if requested output is in file
if rxcomponent not in availableoutputs:
raise CmdInputError('{} output requested to plot, but the available output for receiver 1 is {}'.format(rxcomponent, ', '.join(availableoutputs)))
outputdata = f[path + '/' + output]
outputdata = f[path + '/' + rxcomponent]
outputdata = np.array(outputdata)
# Check that there is more than one A-scan present
if outputdata.shape[1] == 1:
raise CmdInputError('{} contains only a single A-scan.'.format(filename))
# Check that there is more than one A-scan present
if outputdata.shape[1] == 1:
raise CmdInputError('{} contains only a single A-scan.'.format(filename))
# Plot B-scan image
fig = plt.figure(num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
plt.imshow(outputdata, extent=[0, outputdata.shape[1], outputdata.shape[0]*f.attrs['dt'], 0], interpolation='nearest', aspect='auto', cmap='seismic', vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata)))
plt.xlabel('Trace number')
plt.ylabel('Time [s]')
plt.grid()
cb = plt.colorbar()
if 'E' in args.output:
cb.set_label('Field strength [V/m]')
elif 'H' in args.output:
cb.set_label('Field strength [A/m]')
elif 'I' in args.output:
cb.set_label('Current [A]')
return outputdata, dt
# Save a PDF/PNG of the figure
#fig.savefig(os.path.splitext(os.path.abspath(args.outputfile))[0] + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
#fig.savefig(os.path.splitext(os.path.abspath(args.outputfile))[0] + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
def mpl_plot(outputdata, dt, rxnumber, rxcomponent):
"""Creates a plot (with matplotlib) of the B-scan.
Args:
outputdata (array): Array of A-scans, i.e. B-scan data.
dt (float): Temporal resolution of the model.
rxnumber (int): Receiver output number.
rxcomponent (str): Receiver output field/current component.
Returns:
plt (object): matplotlib plot object.
"""
plt.show()
fig = plt.figure(num='rx' + str(rxnumber), figsize=(20, 10), facecolor='w', edgecolor='w')
plt.imshow(outputdata, extent=[0, outputdata.shape[1], outputdata.shape[0]*dt, 0], interpolation='nearest', aspect='auto', cmap='seismic', vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata)))
plt.xlabel('Trace number')
plt.ylabel('Time [s]')
plt.grid()
cb = plt.colorbar()
if 'E' in rxcomponent:
cb.set_label('Field strength [V/m]')
elif 'H' in rxcomponent:
cb.set_label('Field strength [A/m]')
elif 'I' in rxcomponent:
cb.set_label('Current [A]')
# Save a PDF/PNG of the figure
#fig.savefig('Bscan' + str(rxnumber) + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
#fig.savefig('Bscan' + str(rxnumber) + '.png', dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
return plt
if __name__ == "__main__":
@@ -80,7 +100,20 @@ if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots a B-scan image.', usage='cd gprMax; python -m tools.plot_Bscan outputfile output')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('output', help='name of output component to be plotted', choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz'])
parser.add_argument('rx_component', help='name of output component to be plotted', choices=['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz'])
args = parser.parse_args()
make_plot(args.outputfile, args.output)
# Open output file and read number of outputs (receivers)
f = h5py.File(args.outputfile, 'r')
nrx = f.attrs['nrx']
f.close()
# Check there are any receivers
if nrx == 0:
raise CmdInputError('No receivers found in {}'.format(args.outputfile))
for rx in range(1, nrx + 1):
outputdata, dt = get_output_data(args.outputfile, rx, args.rx_component)
plt = mpl_plot(outputdata, dt, rx, args.rx_component)
plt.show()

查看文件

@@ -25,14 +25,14 @@ import matplotlib.gridspec as gridspec
from gprMax.exceptions import CmdInputError
def plot_antenna_params(filename, tln=1, rxn=None, rx=None):
def plot_antenna_params(filename, tlnumber=1, rxnumber=None, rxcomponent=None):
"""Calculates and plots antenna parameters - s11, (s21) and input impedance.
Args:
filename (string): Filename (including path) of output file.
tln (int): Transmitting antenna - transmission line number
rxn (int): Receiver antenna - output number
rx (str): Receiver antenna - output electric field component
tlnumber (int): Transmitting antenna - transmission line number
rxnumber (int): Receiver antenna - output number
rxcomponent (str): Receiver antenna - output electric field component
"""
# Open output file and read some attributes
@@ -51,7 +51,7 @@ def plot_antenna_params(filename, tln=1, rxn=None, rx=None):
print('Frequency bin spacing: {:g} Hz'.format(df))
# Read/calculate voltages and currents
tlpath = '/tls/tl' + str(tln) + '/'
tlpath = '/tls/tl' + str(tlnumber) + '/'
# Incident voltages/currents
Vinc = f[tlpath + 'Vinc'][:]
@@ -66,24 +66,21 @@ def plot_antenna_params(filename, tln=1, rxn=None, rx=None):
Iref = Itotal - Iinc
# If a receiver number for a receiever antenna is given can get received voltage for s21
if rxn:
if rx not in ['Ex', 'Ey', 'Ez']:
raise CmdInputError('The field component for the receiver antenna output must be Ex, Ey, or Ez')
rxpath = '/rxs/rx' + str(rxn) + '/'
if rxnumber:
rxpath = '/rxs/rx' + str(rxnumber) + '/'
availableoutputs = list(f[rxpath].keys())
if rx not in availableoutputs:
raise CmdInputError('{} output requested, but the available output for receiver {} is {}'.format(rx, rxn, ', '.join(availableoutputs)))
if rxcomponent not in availableoutputs:
raise CmdInputError('{} output requested, but the available output for receiver {} is {}'.format(rxcomponent, rxnumber, ', '.join(availableoutputs)))
rxpath += rx
rxpath += rxcomponent
# Received voltage
if rx == 'Ex':
if rxcomponent == 'Ex':
Vrec = f[rxpath][:] * -1 * dxdydz[0]
elif rx == 'Ey':
elif rxcomponent == 'Ey':
Vrec = f[rxpath][:] * -1 * dxdydz[1]
elif rx == 'Ez':
elif rxcomponent == 'Ez':
Vrec = f[rxpath][:] * -1 * dxdydz[2]
f.close()
@@ -95,7 +92,7 @@ def plot_antenna_params(filename, tln=1, rxn=None, rx=None):
# Calculate s11
s11 = np.abs(np.fft.fft(Vref) * delaycorrection) / np.abs(np.fft.fft(Vinc) * delaycorrection)
if rxn:
if rxnumber:
s21 = np.abs(np.fft.fft(Vrec)) / np.abs(np.fft.fft(Vinc) * delaycorrection)
# Calculate input impedance
@@ -112,7 +109,7 @@ def plot_antenna_params(filename, tln=1, rxn=None, rx=None):
Vtotalp = 20 * np.log10(np.abs((np.fft.fft(Vtotal) * delaycorrection)))
Itotalp = 20 * np.log10(np.abs(np.fft.fft(Itotal)))
s11 = 20 * np.log10(s11)
if rxn:
if rxnumber:
s21 = 20 * np.log10(s21)
# Set plotting range
@@ -278,7 +275,7 @@ def plot_antenna_params(filename, tln=1, rxn=None, rx=None):
ax.grid()
# Plot frequency spectra of s21
if rxn:
if rxnumber:
ax = plt.subplot(gs2[0, 1])
markerline, stemlines, baseline = ax.stem(freqs[pltrange], s21[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
@@ -363,10 +360,10 @@ if __name__ == "__main__":
# Parse command line arguments
parser = argparse.ArgumentParser(description='Plots antenna parameters (s11, s21 parameters and input impedance) from an output file containing a transmission line source.', usage='cd gprMax; python -m tools.plot_antenna_params outputfile')
parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('-tln', default=1, type=int, help='transmitting antenna - transmission line number')
parser.add_argument('-rxn', type=int, help='receiver antenna - output number')
parser.add_argument('-rx', type=str, help='receiver antenna - output electric field component')
parser.add_argument('--tl-num', default=1, type=int, help='transmitting antenna - transmission line number')
parser.add_argument('--rx-num', type=int, help='receiver antenna - output number')
parser.add_argument('--rx-component', type=str, help='receiver antenna - output electric field component', choices=['Ex', 'Ey', 'Ez'])
args = parser.parse_args()
plot_antenna_params(args.outputfile, args.tln, args.rxn, args.rx)
plot_antenna_params(args.outputfile, args.tl_num, args.rx_num, args.rx_component)