Added optional command line flag to run simulations for performance benchmarking.

这个提交包含在:
Craig Warren
2016-02-29 15:52:50 +00:00
父节点 59e1b10fba
当前提交 9815b2674c

查看文件

@@ -51,7 +51,8 @@ def main():
parser = argparse.ArgumentParser(prog='gprMax', description='Electromagnetic modelling software based on the Finite-Difference Time-Domain (FDTD) method')
parser.add_argument('inputfile', help='path to and name of inputfile')
parser.add_argument('-n', default=1, type=int, help='number of times to run the input file')
parser.add_argument('-mpi', action='store_true', default=False, help='switch on MPI')
parser.add_argument('-mpi', action='store_true', default=False, help='switch on MPI task farm')
parser.add_argument('-benchmark', action='store_true', default=False, help='switch on benchmarking mode')
parser.add_argument('--geometry-only', action='store_true', default=False, help='only build model and produce geometry file(s)')
parser.add_argument('--write-python', action='store_true', default=False, help='write an input file after any Python code blocks in the original input file have been processed')
parser.add_argument('--opt-taguchi', action='store_true', default=False, help='optimise parameters using the Taguchi optimisation method')
@@ -65,16 +66,26 @@ def main():
# Process for Taguchi optimisation
if args.opt_taguchi:
if args.benchmarking:
raise GeneralError('Taguchi optimisation should not be used with benchmarking mode')
from gprMax.optimisation_taguchi import run_opt_sim
run_opt_sim(args, numbermodelruns, inputfile, usernamespace)
# Process for benchmarking simulation
elif args.benchmark:
run_benchmark_sim(args, inputfile, usernamespace)
# Process for standard simulation
else:
if args.mpi: # Mixed mode MPI/OpenMP - MPI task farm for models with each model parallelised with OpenMP
# Mixed mode MPI/OpenMP - MPI task farm for models with each model parallelised with OpenMP
if args.mpi:
if args.benchmarking:
raise GeneralError('MPI should not be used with benchmarking mode')
if numbermodelruns == 1:
raise GeneralError('MPI is not beneficial when there is only one model to run')
run_mpi_sim(args, numbermodelruns, inputfile, usernamespace)
else: # Standard behaviour - models run serially with each model parallelised with OpenMP
# Standard behaviour - models run serially with each model parallelised with OpenMP
else:
run_std_sim(args, numbermodelruns, inputfile, usernamespace)
print('\nSimulation completed.\n{}\n'.format(68*'*'))
@@ -102,6 +113,40 @@ def run_std_sim(args, numbermodelruns, inputfile, usernamespace, optparams=None)
modelusernamespace = usernamespace
run_model(args, modelrun, numbermodelruns, inputfile, modelusernamespace)
tsimend = perf_counter()
print(tsolve)
print('\nTotal simulation time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart))))
def run_benchmark_sim(args, inputfile, usernamespace):
"""Run standard simulation in benchmarking mode - models are run one after another and each model is parallelised with OpenMP
Args:
args (dict): Namespace with command line arguments
inputfile (str): Name of the input file to open.
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
"""
# Number of threads to test - start from max physical CPU cores and divide in half until 1
thread = psutil.cpu_count(logical=False)
threads = [thread]
while not thread%2:
thread /= 2
threads.append(int(thread))
benchtimes = np.zeros(len(threads))
numbermodelruns = len(threads)
tsimstart = perf_counter()
for modelrun in range(1, numbermodelruns + 1):
os.environ['OMP_NUM_THREADS'] = str(threads[modelrun - 1])
tsolve = run_model(args, modelrun, numbermodelruns, inputfile, usernamespace)
benchtimes[modelrun - 1] = tsolve
tsimend = perf_counter()
# Save number of threads and benchmarking times to NumPy archive
threads = np.array(threads)
np.savez(os.path.splitext(inputfile)[0], threads=threads, benchtimes=benchtimes)
print('\nTotal simulation time [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsimend - tsimstart))))
@@ -188,6 +233,9 @@ def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
numbermodelruns (int): Total number of model runs.
inputfile (str): Name of the input file to open.
usernamespace (dict): Namespace that can be accessed by user in any Python code blocks in input file.
Returns:
tsolve (int): Length of time (seconds) of main FDTD calculations
"""
# Monitor memory usage
@@ -401,10 +449,13 @@ def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
# Close output file
f.close()
tsolveend = perf_counter()
print('\n\nSolving took [HH:MM:SS]: {}'.format(datetime.timedelta(seconds=int(tsolveend - tsolvestart))))
print('Peak memory (approx) used: {}'.format(human_size(p.memory_info().rss)))
return int(tsolveend - tsolvestart)