Updates to structure.

这个提交包含在:
craig-warren
2016-01-08 17:19:56 +00:00
父节点 d3be3e49e8
当前提交 7fa1cac901
共有 16 个文件被更改,包括 19 次插入110 次删除

查看文件

@@ -11,7 +11,7 @@ Building a heterogeneous soil
This example demonstrates how to build a more realistic soil model using a stochastic distribution of dielectric properties. A mixing model for soils proposed by Peplinski (http://dx.doi.org/10.1109/36.387598) is used to define a series of dispersive material properties for the soil.
.. literalinclude:: models/heterogeneous_soil.in
.. literalinclude:: ../../user_models/heterogeneous_soil.in
:language: none
:linenos:

查看文件

@@ -7,11 +7,11 @@ This section provides some example models of antennas. Each example comes with a
Wire dipole antenna model
=========================
:download:`antenna_wire_dipole_fs.in <models/antenna_wire_dipole_fs.in>`
:download:`antenna_wire_dipole_fs.in <../../user_models/antenna_wire_dipole_fs.in>`
This example demonstrates a model of a half-wavelength wire dipole antenna in free space.
.. literalinclude:: models/antenna_wire_dipole_fs.in
.. literalinclude:: ../../user_models/antenna_wire_dipole_fs.in
:language: none
:linenos:
@@ -21,11 +21,11 @@ This example demonstrates a model of a half-wavelength wire dipole antenna in fr
Bowtie antenna model
====================
:download:`antenna_MALA_1200_fs.in <models/antenna_MALA_1200_fs.in>`
:download:`antenna_MALA_1200_fs.in <../../user_models/antenna_MALA_1200_fs.in>`
This example demonstrates how to use one of the built-in antenna models in a simulation. Using a model of an antenna rather than a simple source, such as a Hertzian dipole, can improve the accuracy of the results of a simulation for many situations. It is especially important when the target is in the near-field of the antenna and there are complex interactions between the antenna and the environment. The simulation uses the model of an antenna similar to a MALA 1.2GHz antenna.
.. literalinclude:: models/antenna_MALA_1200_fs.in
.. literalinclude:: ../../user_models/antenna_MALA_1200_fs.in
:language: none
:linenos:
@@ -48,14 +48,14 @@ Results
Field outputs from the receiver bowtie of a model of an antenna similar to a MALA 1.2GHz antenna.
B-scan with an antenna model
============================
B-scan with a bowtie antenna model
==================================
:download:`GSSI_1500_cylinder_Bscan.in <models/GSSI_1500_cylinder_Bscan.in>`
:download:`GSSI_1500_cylinder_Bscan.in <../../user_models/GSSI_1500_cylinder_Bscan.in>`
This example demonstrates how to create a B-scan with an antenna model. The scenario is purposely simple to illustrate the method. A metal cylinder of diameter 20mm is buried in a dielectric half-space which has a relative permittivity of six. The simulation uses the model of an antenna similar to a GSSI 1.5GHz antenna.
.. literalinclude:: models/GSSI_1500_cylinder_Bscan.in
.. literalinclude:: ../../user_models/GSSI_1500_cylinder_Bscan.in
:language: none
:linenos:

查看文件

@@ -1,6 +1,6 @@
*********
Simple 2D
*********
********
Basic 2D
********
This section provides some general example models in 2D that demonstrate how to use certain features of gprMax. Each example comes with an input file which you can download and run.
@@ -9,11 +9,11 @@ This section provides some general example models in 2D that demonstrate how to
A-scan from a metal cylinder
============================
:download:`cylinder_Ascan_2D.in <models/cylinder_Ascan_2D.in>`
:download:`cylinder_Ascan_2D.in <../../user_models/cylinder_Ascan_2D.in>`
This example is the gprMax equivalent of 'Hello World'! It demonstrates how to simulate a single trace (A-scan) from a metal cylinder buried in a dielectric half-space.
.. literalinclude:: models/cylinder_Ascan_2D.in
.. literalinclude:: ../../user_models/cylinder_Ascan_2D.in
:language: none
:linenos:
@@ -133,11 +133,11 @@ You should have produced an output file ``cylinder_Ascan_2D.out``. You can view
B-scan from a metal cylinder
============================
:download:`cylinder_Bscan_2D.in <models/cylinder_Bscan_2D.in>`
:download:`cylinder_Bscan_2D.in <../../user_models/cylinder_Bscan_2D.in>`
This example using the same geometry as the previous example but this time a B-scan is created. A B-scan is composed of multiple traces (A-scans) recorded as the source and receiver are moved over the target, in this case the metal cylinder.
.. literalinclude:: models/cylinder_Bscan_2D.in
.. literalinclude:: ../../user_models/cylinder_Bscan_2D.in
:language: none
:linenos:

二进制文件未显示。

查看文件

@@ -1,16 +0,0 @@
#title: B-scan from a metal cylinder buried in a dielectric half-space with a GSSI 1.5GHz 'like' antenna
#domain: 0.480 0.148 0.235
#dx_dy_dz: 0.001 0.001 0.001
#time_window: 6e-9
#material: 6 0 1 0 half_space
#box: 0 0 0 0.480 0.148 0.170 half_space
#cylinder: 0.240 0 0.080 0.240 0.148 0.080 0.010 pec
#python:
from user_libs.antennas import antenna_like_GSSI_1500
antenna_like_GSSI_1500(0.105 + current_model_run * 0.005, 0.074, 0.170, 0.001)
#end_python:
geometry_view: 0 0 0 0.480 0.148 0.235 0.001 0.001 0.001 GSSI_1500_cylinder n

查看文件

@@ -1,9 +0,0 @@
#title: MALA 1.2GHz 'like' antenna in free-space
#domain: 0.264 0.189 0.220
#dx_dy_dz: 0.001 0.001 0.001
#time_window: 6e-9
#python:
from user_libs.antennas import antenna_like_MALA_1200
antenna_like_MALA_1200(0.132, 0.095, 0.100, 0.001)
#end_python:

二进制文件未显示。

查看文件

@@ -1,18 +0,0 @@
#title: Wire antenna - half-wavelength dipole in free-space
#domain: 0.050 0.050 0.200
#dx_dy_dz: 0.001 0.001 0.001
#time_window: 5e-9
#waveform: gaussian 1 1.5e9 mypulse
#transmission_line: z 0.025 0.025 0.100 73 mypulse
## 136mm length
#cylinder: 0.025 0.025 0.032 0.025 0.025 0.168 0.003 pec
#cylinder: 0.025 0.025 0.100 0.025 0.025 0.101 0.003 free_space
geometry_view: 0 0 0 0.050 0.050 0.200 0.001 0.001 0.001 antenna_wire_dipole_fs n
python:
for i in range(1, 61):
print('#snapshot: 0 0 0 0.049 0.049 0.199 0.001 0.001 0.001 {} snapshot{}'.format((i/10)*1e-9, i))
end_python:

查看文件

@@ -1,17 +0,0 @@
#title: A-scan from a metal cylinder buried in a dielectric half-space
#domain: 0.240 0.190 0.002
#dx_dy_dz: 0.002 0.002 0.002
#time_window: 3e-9
#time_step_limit_type: 2D
#pml_cells: 10 10 0 10 10 0
#material: 6 0 1 0 half_space
#waveform: ricker 1 1.5e9 my_ricker
#hertzian_dipole: z 0.100 0.170 0 my_ricker
#rx: 0.140 0.170 0
#box: 0 0 0 0.240 0.170 0.002 half_space
#cylinder: 0.120 0.080 0 0.120 0.080 0.002 0.010 pec
#geometry_view: 0 0 0 0.240 0.190 0.002 0.002 0.002 0.002 cylinder_half_space n

二进制文件未显示。

查看文件

@@ -1,17 +0,0 @@
#title: B-scan from a metal cylinder buried in a dielectric half-space
#domain: 0.240 0.190 0.002
#dx_dy_dz: 0.002 0.002 0.002
#time_window: 3e-9
#time_step_limit_type: 2D
#pml_cells: 10 10 0 10 10 0
#material: 6 0 1 0 half_space
#waveform: ricker 1 1.5e9 my_ricker
#hertzian_dipole: z 0.040 0.170 0 my_ricker
#rx: 0.080 0.170 0
#src_steps: 0.002 0 0
#rx_steps: 0.002 0 0
#box: 0 0 0 0.240 0.170 0.002 half_space
#cylinder: 0.120 0.080 0 0.120 0.080 0.002 0.010 pec

二进制文件未显示。

二进制文件未显示。

查看文件

@@ -1,14 +0,0 @@
#title: Heterogeneous soil using a stochastic distribution of dielectric properties given by a mixing model from Peplinski
#domain: 0.15 0.15 0.1
#dx_dy_dz: 0.001 0.001 0.001
#time_window: 6e-9
#waveform: ricker 1 1.5e9 my_ricker
#hertzian_dipole: y 0.045 0.075 0.085 my_ricker
#rx: 0.105 0.075 0.085
#soil_peplinski: 0.5 0.5 2.0 2.66 0.001 0.25 my_soil
#fractal_box: 0 0 0 0.15 0.15 0.070 1.5 1 1 1 50 my_soil my_soil_box
#add_surface_roughness: 0 0 0.070 0.15 0.15 0.070 1.5 1 1 0.065 0.080 my_soil_box
#geometry_view: 0 0 0 0.15 0.15 0.1 0.001 0.001 0.001 heterogeneous_soil n

查看文件

@@ -1,8 +1,8 @@
.. _utils:
***************
Other utilities
***************
**************
File utilities
**************
This section provides information on how to use the other Python modules in the ``tools`` package to help manage gprMax files.