Tidied code formatting and improved comments.

这个提交包含在:
Craig Warren
2020-11-24 11:58:31 +00:00
父节点 3bd4e4acf8
当前提交 7207147337

查看文件

@@ -97,21 +97,27 @@ class VoltageSource(Source):
if self.polarisation == 'x':
if self.resistance != 0:
Ex[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * (1 / (self.resistance * G.dy * G.dz))
Ex[i, j, k] -= (updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesJ[iteration]
* (1 / (self.resistance * G.dy * G.dz)))
else:
Ex[i, j, k] = -1 * self.waveformvaluesJ[iteration] / G.dx
Ex[i, j, k] = - self.waveformvaluesJ[iteration] / G.dx
elif self.polarisation == 'y':
if self.resistance != 0:
Ey[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * (1 / (self.resistance * G.dx * G.dz))
Ey[i, j, k] -= (updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesJ[iteration]
* (1 / (self.resistance * G.dx * G.dz)))
else:
Ey[i, j, k] = -1 * self.waveformvaluesJ[iteration] / G.dy
Ey[i, j, k] = - self.waveformvaluesJ[iteration] / G.dy
elif self.polarisation == 'z':
if self.resistance != 0:
Ez[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * (1 / (self.resistance * G.dx * G.dy))
Ez[i, j, k] -= (updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesJ[iteration]
* (1 / (self.resistance * G.dx * G.dy)))
else:
Ez[i, j, k] = -1 * self.waveformvaluesJ[iteration] / G.dz
Ez[i, j, k] = - self.waveformvaluesJ[iteration] / G.dz
def create_material(self, G):
"""
@@ -173,13 +179,19 @@ class HertzianDipole(Source):
componentID = 'E' + self.polarisation
if self.polarisation == 'x':
Ex[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * self.dl * (1 / (G.dx * G.dy * G.dz))
Ex[i, j, k] -= (updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesJ[iteration]
* self.dl * (1 / (G.dx * G.dy * G.dz)))
elif self.polarisation == 'y':
Ey[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * self.dl * (1 / (G.dx * G.dy * G.dz))
Ey[i, j, k] -= (updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesJ[iteration]
* self.dl * (1 / (G.dx * G.dy * G.dz)))
elif self.polarisation == 'z':
Ez[i, j, k] -= updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesJ[iteration] * self.dl * (1 / (G.dx * G.dy * G.dz))
Ez[i, j, k] -= (updatecoeffsE[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesJ[iteration]
* self.dl * (1 / (G.dx * G.dy * G.dz)))
class MagneticDipole(Source):
@@ -206,17 +218,24 @@ class MagneticDipole(Source):
componentID = 'H' + self.polarisation
if self.polarisation == 'x':
Hx[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesM[iteration] * (1 / (G.dx * G.dy * G.dz))
Hx[i, j, k] -= (updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesM[iteration]
* (1 / (G.dx * G.dy * G.dz)))
elif self.polarisation == 'y':
Hy[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesM[iteration] * (1 / (G.dx * G.dy * G.dz))
Hy[i, j, k] -= (updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesM[iteration]
* (1 / (G.dx * G.dy * G.dz)))
elif self.polarisation == 'z':
Hz[i, j, k] -= updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4] * self.waveformvaluesM[iteration] * (1 / (G.dx * G.dy * G.dz))
Hz[i, j, k] -= (updatecoeffsH[ID[G.IDlookup[componentID], i, j, k], 4]
* self.waveformvaluesM[iteration]
* (1 / (G.dx * G.dy * G.dz)))
def gpu_initialise_src_arrays(sources, G):
"""Initialise arrays on GPU for source coordinates/polarisation, other source information, and source waveform values.
"""Initialise arrays on GPU for source coordinates/polarisation,
other source information, and source waveform values.
Args:
sources (list): List of sources of one class, e.g. HertzianDipoles.
@@ -264,7 +283,8 @@ def gpu_initialise_src_arrays(sources, G):
class TransmissionLine(Source):
"""
A transmission line source is a one-dimensional transmission
line which is attached virtually to a grid cell.
line which is attached virtually to a grid cell. An example of this
type of model can be found in: https://doi.org/10.1109/8.277228
"""
def __init__(self, G):
@@ -304,7 +324,8 @@ class TransmissionLine(Source):
def calculate_incident_V_I(self, G):
"""
Calculates the incident voltage and current with a long length
transmission line not connected to the main grid from: http://dx.doi.org/10.1002/mop.10415
transmission line, initially not connected to the main grid.
This idea comes from: http://dx.doi.org/10.1002/mop.10415
Args:
G (class): Grid class instance - holds essential parameters describing the model.
@@ -327,7 +348,6 @@ class TransmissionLine(Source):
"""
h = (c * G.dt - self.dl) / (c * G.dt + self.dl)
self.voltage[0] = h * (self.voltage[1] - self.abcv0) + self.abcv1
self.abcv0 = self.voltage[0]
self.abcv1 = self.voltage[1]
@@ -341,7 +361,8 @@ class TransmissionLine(Source):
"""
# Update all the voltage values along the line
self.voltage[1:self.nl] -= self.resistance * (c * G.dt / self.dl) * (self.current[1:self.nl] - self.current[0:self.nl - 1])
self.voltage[1:self.nl] -= (self.resistance * (c * G.dt / self.dl)
* (self.current[1:self.nl] - self.current[0:self.nl - 1]))
# Update the voltage at the position of the one-way injector excitation
self.voltage[self.srcpos] += (c * G.dt / self.dl) * self.waveformvaluesJ[iteration]
@@ -358,10 +379,12 @@ class TransmissionLine(Source):
"""
# Update all the current values along the line
self.current[0:self.nl - 1] -= (1 / self.resistance) * (c * G.dt / self.dl) * (self.voltage[1:self.nl] - self.voltage[0:self.nl - 1])
self.current[0:self.nl - 1] -= ((1 / self.resistance) * (c * G.dt / self.dl)
* (self.voltage[1:self.nl] - self.voltage[0:self.nl - 1]))
# Update the current one cell before the position of the one-way injector excitation
self.current[self.srcpos - 1] += (1 / self.resistance) * (c * G.dt / self.dl) * self.waveformvaluesM[iteration]
self.current[self.srcpos - 1] += ((1 / self.resistance) * (c * G.dt / self.dl)
* self.waveformvaluesM[iteration])
def update_electric(self, iteration, updatecoeffsE, ID, Ex, Ey, Ez, G):
"""Updates electric field value in the main grid from voltage value in the transmission line.
@@ -415,96 +438,4 @@ class TransmissionLine(Source):
elif self.polarisation == 'z':
self.current[self.antpos] = Iz(i, j, k, G.Hx, G.Hy, G.Hz, G)
self.update_current(iteration, G)
class PlaneWave(Source):
"""A plane wave source. It uses a total-field/scattered-field (TF/SF) formulation."""
def __init__(self, G):
"""
Args:
G (class): Grid class instance - holds essential parameters describing the model.
"""
super(Source, self).__init__()
# Coordinates defining Huygen's surface
self.xs = 0
self.xf = 0
self.ys = 0
self.yf = 0
self.zs = 0
self.zf = 0
# Spherical coordinates defining incident unit wavevector (k)
self.theta = 0 # 0 <= theta <= 180
self.phi = 0 # 0 <= phi <= 360
# Angle that incident electric field makes with k cross z
self.psi = 0 # 0 <= psi <= 360
def calculate_origin(self, G):
"""Calculate origin of TF/SF interface with incident wavefront."""
if self.theta >= 0 and self.theta <= 90:
if self.phi >= 0 and self.phi <= 90:
self.xcoordorigin = 0
self.ycoordorigin = 0
self.zcoordorigin = 0
elif self.phi > 90 and self.phi <= 180:
self.xcoordorigin = G.nx
self.ycoordorigin = 0
self.zcoordorigin = 0
elif self.phi > 180 and self.phi <= 270:
self.xcoordorigin = G.nx
self.ycoordorigin = G.ny
self.zcoordorigin = 0
elif self.phi > 270 and self.phi <= 360:
self.xcoordorigin = 0
self.ycoordorigin = G.ny
self.zcoordorigin = 0
elif self.theta > 90 and self.theta <= 180:
if self.phi >= 0 and self.phi <= 90:
self.xcoordorigin = 0
self.ycoordorigin = 0
self.zcoordorigin = G.nz
elif self.phi > 90 and self.phi <= 180:
self.xcoordorigin = G.nx
self.ycoordorigin = 0
self.zcoordorigin = G.nz
elif self.phi > 180 and self.phi <= 270:
self.xcoordorigin = G.nx
self.ycoordorigin = G.ny
self.zcoordorigin = G.nz
elif self.phi > 270 and self.phi <= 360:
self.xcoordorigin = 0
self.ycoordorigin = G.ny
self.zcoordorigin = G.nz
def calculate_vector_components(self):
"""Calculate components of incident fields."""
self.theta = np.deg2rad(self.theta)
self.phi = np.deg2rad(self.phi)
self.psi = np.deg2rad(self.psi)
# Components of incident unit wavevector
self.kx = np.sin(self.theta) * np.cos(self.phi)
self.ky = np.sin(self.theta) * np.sin(self.phi)
self.kz = np.cos(self.theta)
# Components of incident field vectors
self.Exinc = np.cos(self.psi) * np.sin(self.phi) - np.sin(self.psi) * np.cos(self.theta) * np.cos(self.phi)
self.Eyinc = -np.cos(self.psi) * np.cos(self.phi) - np.sin(self.psi) * np.cos(self.theta) * np.sin(self.phi)
self.Ezinc = np.sin(self.psi) * np.sin(self.theta)
self.Hxinc = np.sin(self.psi) * np.sin(self.phi) + np.cos(self.psi) * np.cos(self.theta) * np.cos(self.phi)
self.Hyinc = -np.sin(self.psi) * np.cos(self.phi) + np.cos(self.psi) * np.cos(self.theta) * np.sin(self.phi)
self.Hzinc = -np.cos(self.psi) * np.sin(self.theta)
self.update_current(iteration, G)