Corrected extra lists and saving of optimisation parameters.

这个提交包含在:
Craig Warren
2016-03-01 14:47:16 +00:00
父节点 8bc370e9d8
当前提交 499e82cc8f

查看文件

@@ -109,7 +109,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
# Update dictionary with history of parameters with optimal values
for key, value in optparams.items():
optparamshist[key].append(value)
optparamshist[key].append(value[0])
# Run a confirmation experiment with optimal values
numbermodelruns = 1
@@ -141,7 +141,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
# Save optimisation parameters history and fitness values history to file
opthistfile = inputfileparts[0] + '_hist'
np.savez(opthistfile, dict(optparamshist), fitnessvalueshist=fitnessvalueshist, optparamsinit=optparamsinit)
np.savez(opthistfile, optparamshist=dict(optparamshist), fitnessvalueshist=fitnessvalueshist, optparamsinit=optparamsinit)
print('\n{}\nTaguchi optimisation completed after {} iteration(s).\nHistory of optimal parameter values {} and of fitness values {}\n{}\n'.format(68*'*', iteration, dict(optparamshist), fitnessvalueshist, 68*'*'))