Changed axes settings to seconds rather than nano-seconds. Added option to put 'm' character before output name to invert it, e.g. 'mEy' is '-Ey'. Can't use the minus sign as it is interpreted as a flag at the command line.

这个提交包含在:
Craig Warren
2016-01-26 15:13:20 +00:00
父节点 99d97f76bb
当前提交 44cfad9046

查看文件

@@ -41,7 +41,6 @@ nrx = f.attrs['nrx']
dt = f.attrs['dt']
iterations = f.attrs['Iterations']
time = np.arange(0, dt * iterations, dt)
time = time / 1e-9
# Check for single output component when doing a FFT
if args.fft:
@@ -56,12 +55,20 @@ for rx in range(1, nrx + 1):
# If only a single output is required, create one subplot
if len(args.outputs) == 1:
# Check if requested output is in file
# Check for polarity of output and if requested output is in file
if args.outputs[0][0] == 'm':
polarity = -1
outputtext = '-' + args.outputs[0][1:]
args.outputs[0] = args.outputs[0][1:]
else:
polarity = 1
outputtext = args.outputs[0]
if args.outputs[0] not in availableoutputs:
raise CmdInputError('{} output requested to plot, but the available output for receiver 1 is {}'.format(args.outputs[0], ', '.join(availableoutputs)))
outputdata = f[path + args.outputs[0]][:]
outputdata = f[path + args.outputs[0]][:] * polarity
# Plotting if FFT required
if args.fft:
# Calculate magnitude of frequency spectra of waveform
@@ -80,26 +87,32 @@ for rx in range(1, nrx + 1):
# Plot time history of output component
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=args.outputs[0])
ax1.set_xlabel('Time [ns]')
ax1.set_ylabel(args.outputs[0] + ' field strength [V/m]')
ax1.set_xlabel('Time [s]')
ax1.set_ylabel(outputtext + ' field strength [V/m]')
ax1.set_xlim([0, np.amax(time)])
ax1.grid()
# Plot frequency spectra
markerline, stemlines, baseline = ax2.stem(freqs[pltrange]/1e9, power[pltrange], '-.')
markerline, stemlines, baseline = ax2.stem(freqs[pltrange], power[pltrange], '-.')
plt.setp(baseline, 'linewidth', 0)
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
line2 = ax2.plot(freqs[pltrange]/1e9, power[pltrange], 'r', lw=2)
ax2.set_xlabel('Frequency [GHz]')
ax2.set_xlabel('Frequency [Hz]')
ax2.set_ylabel('Power [dB]')
ax2.grid()
# Change colours and labels for magnetic field components
# Change colours and labels for magnetic field components or currents
if 'H' in args.outputs[0]:
plt.setp(line1, color='g')
plt.setp(line2, color='g')
plt.setp(ax1, ylabel=outputtext + ' field strength [A/m]')
plt.setp(stemlines, 'color', 'g')
plt.setp(markerline, 'markerfacecolor', 'g', 'markeredgecolor', 'g')
elif 'I' in args.outputs[0]:
plt.setp(line1, color='b')
plt.setp(line2, color='b')
plt.setp(ax1, ylabel=args.outputs[0] + ' field strength [A/m]')
plt.setp(ax1, ylabel=outputtext + ' current [A]')
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
@@ -107,64 +120,75 @@ for rx in range(1, nrx + 1):
# Plotting if no FFT required
else:
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.outputs[0] + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
line = ax.plot(time, outputdata,'r', lw=2, label=args.outputs[0])
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]', ylabel=outputtext + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
line = ax.plot(time, outputdata,'r', lw=2, label=outputtext)
ax.set_xlim([0, np.amax(time)])
ax.grid()
if 'H' in args.outputs[0]:
plt.setp(line, color='b')
plt.setp(ax, ylabel=args.outputs[0] + ', field strength [A/m]')
plt.setp(line, color='g')
plt.setp(ax, ylabel=outputtext + ', field strength [A/m]')
elif 'I' in args.outputs[0]:
plt.setp(line, color='b')
plt.setp(ax, ylabel=args.outputs[0] + ', current [A]')
plt.setp(ax, ylabel=outputtext + ', current [A]')
# If multiple fields required, creat all nine subplots and populate only the specified ones
else:
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [s]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
gs = gridspec.GridSpec(3, 3, hspace=0.3, wspace=0.3)
for output in args.outputs:
# Check for polarity of output and if requested output is in file
if output[0] == 'm':
polarity = -1
outputtext = '-' + output[1:]
output = output[1:]
else:
polarity = 1
outputtext = output
# Check if requested output is in file
if output not in availableoutputs:
raise CmdInputError('Output(s) requested to plot: {}, but available output(s) for receiver {} in the file: {}'.format(', '.join(args.outputs), rx, ', '.join(availableoutputs)))
outputdata = f[path + output][:]
outputdata = f[path + output][:] * polarity
if output == 'Ex':
ax = plt.subplot(gs[0, 0])
ax.plot(time, outputdata,'r', lw=2, label=output)
ax.set_ylabel(output + ', field strength [V/m]')
ax.plot(time, outputdata,'r', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [V/m]')
elif output == 'Ey':
ax = plt.subplot(gs[1, 0])
ax.plot(time, outputdata,'r', lw=2, label=output)
ax.set_ylabel(output + ', field strength [V/m]')
ax.plot(time, outputdata,'r', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [V/m]')
elif output == 'Ez':
ax = plt.subplot(gs[2, 0])
ax.plot(time, outputdata,'r', lw=2, label=output)
ax.set_ylabel(output + ', field strength [V/m]')
ax.plot(time, outputdata,'r', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [V/m]')
elif output == 'Hx':
ax = plt.subplot(gs[0, 1])
ax.plot(time, outputdata,'b', lw=2, label=output)
ax.set_ylabel(output + ', field strength [A/m]')
ax.plot(time, outputdata,'g', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [A/m]')
elif output == 'Hy':
ax = plt.subplot(gs[1, 1])
ax.plot(time, outputdata,'b', lw=2, label=output)
ax.set_ylabel(output + ', field strength [A/m]')
ax.plot(time, outputdata,'g', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [A/m]')
elif output == 'Hz':
ax = plt.subplot(gs[2, 1])
ax.plot(time, outputdata,'b', lw=2, label=output)
ax.set_ylabel(output + ', field strength [A/m]')
ax.plot(time, outputdata,'g', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', field strength [A/m]')
elif output == 'Ix':
ax = plt.subplot(gs[0, 2])
ax.plot(time, outputdata,'b', lw=2, label=output)
ax.set_ylabel(output + ', current [A]')
ax.plot(time, outputdata,'b', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', current [A]')
elif output == 'Iy':
ax = plt.subplot(gs[1, 2])
ax.plot(time, outputdata,'b', lw=2, label=output)
ax.set_ylabel(output + ', current [A]')
ax.plot(time, outputdata,'b', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', current [A]')
elif output == 'Iz':
ax = plt.subplot(gs[2, 2])
ax.plot(time, outputdata,'b', lw=2, label=output)
ax.set_ylabel(output + ', current [A]')
ax.plot(time, outputdata,'b', lw=2, label=outputtext)
ax.set_ylabel(outputtext + ', current [A]')
for ax in fig.axes:
ax.set_xlim([0, np.amax(time)])
ax.grid()