Modified to contain FFT plotting option.

这个提交包含在:
Craig Warren
2016-01-05 17:49:25 +00:00
父节点 3fc3cad183
当前提交 41354c0f2c

查看文件

@@ -26,18 +26,21 @@ from gprMax.exceptions import CmdInputError
"""Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window.""" """Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window."""
# Fields that can be plotted # Fields that can be plotted
fieldslist = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz'] fieldslist = ['Ex', 'Hx', 'Ey', 'Hy', 'Ez', 'Hz']
# Parse command line arguments # Parse command line arguments
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile') parser = argparse.ArgumentParser(description='Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
parser.add_argument('outputfile', help='name of output file including path') parser.add_argument('outputfile', help='name of output file including path')
parser.add_argument('--fields', help='list of fields to be plotted, i.e. Ex Ey Ez', default=fieldslist, nargs='+') parser.add_argument('--fields', help='list of fields to be plotted, i.e. Ex Ey Ez', default=fieldslist, nargs='+')
parser.add_argument('-fft', action='store_true', default=False, help='plot FFT (single field component must be specified)')
args = parser.parse_args() args = parser.parse_args()
file = args.outputfile file = args.outputfile
f = h5py.File(file, 'r') f = h5py.File(file, 'r')
nrx = f.attrs['nrx'] nrx = f.attrs['nrx']
time = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt']) dt = f.attrs['dt']
iterations = f.attrs['Iterations']
time = np.arange(0, dt * iterations, dt)
time = time / 1e-9 time = time / 1e-9
# Check for valid field names # Check for valid field names
@@ -45,46 +48,93 @@ for field in args.fields:
if field not in fieldslist: if field not in fieldslist:
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(field)) raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(field))
# Check for single field component when doing a FFT
if args.fft:
if not len(args.fields) == 1:
raise CmdInputError('A single field component must be specified when using the -fft option')
# New plot for each receiver
for rx in range(1, nrx + 1): for rx in range(1, nrx + 1):
path = '/rxs/rx' + str(rx) + '/' path = '/rxs/rx' + str(rx) + '/'
# If only a single field is required, create one subplot # If only a single field is required, create one subplot
if len(args.fields) == 1: if len(args.fields) == 1:
fielddata = f[path + args.fields[0]][:] fielddata = f[path + args.fields[0]][:]
if 'E' in args.fields[0]:
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ', field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w') # Plotting if FFT required
ax.plot(time, fielddata,'r', lw=2, label=args.fields[0]) if args.fft:
ax.grid() # Calculate frequency spectra of waveform
elif 'H' in args.fields[0]: power = 20 * np.log10(np.abs(np.fft.fft(fielddata))**2)
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ', field strength [A/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w') freqs = np.fft.fftfreq(power.size, d=dt)
ax.plot(time, fielddata,'b', lw=2, label=args.fields[0])
# Shift powers so any spectra with negative DC component will start at zero
power -= np.amax(power)
# Set plotting range to power drop to -140dB
pltrange = np.where(power < -140)[0][0] + 1
# Plot waveform
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
line = ax1.plot(time, fielddata, 'r', lw=2, label=args.fields[0])
ax1.set_xlabel('Time [ns]')
ax1.set_ylabel(args.fields[0] + ' field strength [V/m]')
ax1.set_xlim([0, np.amax(time)])
ax1.grid()
# Plot frequency spectra
markerline, stemlines, baseline = ax2.stem(freqs[0:pltrange]/1e9, power[0:pltrange], '--')
plt.setp(stemlines, 'color', 'r')
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
ax2.set_xlabel('Frequency [GHz]')
ax2.set_ylabel('Power [dB]')
ax2.grid()
# Change colours and labels for magnetic field components
if 'H' in args.fields[0]:
plt.setp(line, color='b')
plt.setp(ax1, ylabel=args.fields[0] + ' field strength [A/m]')
plt.setp(stemlines, 'color', 'b')
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
plt.show()
# Plotting if no FFT required
else:
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
line = ax.plot(time, fielddata,'r', lw=2, label=args.fields[0])
ax.set_xlim([0, np.amax(time)])
ax.grid() ax.grid()
# If multiple fields are required, created all six subplots and populate only the specified ones if 'H' in args.fields[0]:
plt.setp(line, color='b')
plt.setp(ax, ylabel=args.fields[0] + ' field strength [A/m]')
# If multiple fields required, creat all six subplots and populate only the specified ones
else: else:
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w') fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
for field in args.fields: for field in args.fields:
fielddata = f[path + field][:] fielddata = f[path + field][:]
if field == 'Ex': if field == 'Ex':
ax1.plot(time, fielddata,'r', lw=2, label=field) ax1.plot(time, fielddata,'r', lw=2, label=field)
ax1.set_ylabel('$E_x$, field strength [V/m]') ax1.set_ylabel(field + ', field strength [V/m]')
elif field == 'Ey': elif field == 'Ey':
ax3.plot(time, fielddata,'r', lw=2, label=field) ax3.plot(time, fielddata,'r', lw=2, label=field)
ax3.set_ylabel('$E_y$, field strength [V/m]') ax3.set_ylabel(field + ', field strength [V/m]')
elif field == 'Ez': elif field == 'Ez':
ax5.plot(time, fielddata,'r', lw=2, label=field) ax5.plot(time, fielddata,'r', lw=2, label=field)
ax5.set_ylabel('$E_z$, field strength [V/m]') ax5.set_ylabel(field + ', field strength [V/m]')
elif field == 'Hx': elif field == 'Hx':
ax2.plot(time, fielddata,'b', lw=2, label=field) ax2.plot(time, fielddata,'b', lw=2, label=field)
ax2.set_ylabel('$H_x$, field strength [A/m]') ax2.set_ylabel(field + ', field strength [A/m]')
elif field == 'Hy': elif field == 'Hy':
ax4.plot(time, fielddata,'b', lw=2, label=field) ax4.plot(time, fielddata,'b', lw=2, label=field)
ax4.set_ylabel('$H_y$, field strength [A/m]') ax4.set_ylabel(field + ', field strength [A/m]')
elif field == 'Hz': elif field == 'Hz':
ax6.plot(time, fielddata,'b', lw=2, label=field) ax6.plot(time, fielddata,'b', lw=2, label=field)
ax6.set_ylabel('$H_z$, field strength [A/m]') ax6.set_ylabel(field + ', field strength [A/m]')
# Turn on grid for ax in fig.axes:
[ax.grid() for ax in fig.axes] ax.set_xlim([0, np.amax(time)])
ax.grid()
# Save a PDF of the figure # Save a PDF of the figure
#fig.savefig(os.path.splitext(os.path.abspath(file))[0] + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1) #fig.savefig(os.path.splitext(os.path.abspath(file))[0] + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)