你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 20:46:52 +08:00
Modified to contain FFT plotting option.
这个提交包含在:
@@ -26,18 +26,21 @@ from gprMax.exceptions import CmdInputError
|
||||
"""Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window."""
|
||||
|
||||
# Fields that can be plotted
|
||||
fieldslist = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz']
|
||||
fieldslist = ['Ex', 'Hx', 'Ey', 'Hy', 'Ez', 'Hz']
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('--fields', help='list of fields to be plotted, i.e. Ex Ey Ez', default=fieldslist, nargs='+')
|
||||
parser.add_argument('-fft', action='store_true', default=False, help='plot FFT (single field component must be specified)')
|
||||
args = parser.parse_args()
|
||||
|
||||
file = args.outputfile
|
||||
f = h5py.File(file, 'r')
|
||||
nrx = f.attrs['nrx']
|
||||
time = np.arange(0, f.attrs['dt'] * f.attrs['Iterations'], f.attrs['dt'])
|
||||
dt = f.attrs['dt']
|
||||
iterations = f.attrs['Iterations']
|
||||
time = np.arange(0, dt * iterations, dt)
|
||||
time = time / 1e-9
|
||||
|
||||
# Check for valid field names
|
||||
@@ -45,46 +48,93 @@ for field in args.fields:
|
||||
if field not in fieldslist:
|
||||
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(field))
|
||||
|
||||
# Check for single field component when doing a FFT
|
||||
if args.fft:
|
||||
if not len(args.fields) == 1:
|
||||
raise CmdInputError('A single field component must be specified when using the -fft option')
|
||||
|
||||
# New plot for each receiver
|
||||
for rx in range(1, nrx + 1):
|
||||
path = '/rxs/rx' + str(rx) + '/'
|
||||
|
||||
# If only a single field is required, create one subplot
|
||||
if len(args.fields) == 1:
|
||||
fielddata = f[path + args.fields[0]][:]
|
||||
if 'E' in args.fields[0]:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ', field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
ax.plot(time, fielddata,'r', lw=2, label=args.fields[0])
|
||||
ax.grid()
|
||||
elif 'H' in args.fields[0]:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ', field strength [A/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
ax.plot(time, fielddata,'b', lw=2, label=args.fields[0])
|
||||
ax.grid()
|
||||
|
||||
# Plotting if FFT required
|
||||
if args.fft:
|
||||
# Calculate frequency spectra of waveform
|
||||
power = 20 * np.log10(np.abs(np.fft.fft(fielddata))**2)
|
||||
freqs = np.fft.fftfreq(power.size, d=dt)
|
||||
|
||||
# If multiple fields are required, created all six subplots and populate only the specified ones
|
||||
# Shift powers so any spectra with negative DC component will start at zero
|
||||
power -= np.amax(power)
|
||||
|
||||
# Set plotting range to power drop to -140dB
|
||||
pltrange = np.where(power < -140)[0][0] + 1
|
||||
|
||||
# Plot waveform
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax1.plot(time, fielddata, 'r', lw=2, label=args.fields[0])
|
||||
ax1.set_xlabel('Time [ns]')
|
||||
ax1.set_ylabel(args.fields[0] + ' field strength [V/m]')
|
||||
ax1.set_xlim([0, np.amax(time)])
|
||||
ax1.grid()
|
||||
|
||||
# Plot frequency spectra
|
||||
markerline, stemlines, baseline = ax2.stem(freqs[0:pltrange]/1e9, power[0:pltrange], '--')
|
||||
plt.setp(stemlines, 'color', 'r')
|
||||
plt.setp(markerline, 'markerfacecolor', 'r', 'markeredgecolor', 'r')
|
||||
ax2.set_xlabel('Frequency [GHz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
ax2.grid()
|
||||
|
||||
# Change colours and labels for magnetic field components
|
||||
if 'H' in args.fields[0]:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax1, ylabel=args.fields[0] + ' field strength [A/m]')
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
|
||||
plt.show()
|
||||
|
||||
# Plotting if no FFT required
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, fielddata,'r', lw=2, label=args.fields[0])
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
if 'H' in args.fields[0]:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax, ylabel=args.fields[0] + ' field strength [A/m]')
|
||||
|
||||
# If multiple fields required, creat all six subplots and populate only the specified ones
|
||||
else:
|
||||
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
for field in args.fields:
|
||||
fielddata = f[path + field][:]
|
||||
if field == 'Ex':
|
||||
ax1.plot(time, fielddata,'r', lw=2, label=field)
|
||||
ax1.set_ylabel('$E_x$, field strength [V/m]')
|
||||
ax1.set_ylabel(field + ', field strength [V/m]')
|
||||
elif field == 'Ey':
|
||||
ax3.plot(time, fielddata,'r', lw=2, label=field)
|
||||
ax3.set_ylabel('$E_y$, field strength [V/m]')
|
||||
ax3.set_ylabel(field + ', field strength [V/m]')
|
||||
elif field == 'Ez':
|
||||
ax5.plot(time, fielddata,'r', lw=2, label=field)
|
||||
ax5.set_ylabel('$E_z$, field strength [V/m]')
|
||||
ax5.set_ylabel(field + ', field strength [V/m]')
|
||||
elif field == 'Hx':
|
||||
ax2.plot(time, fielddata,'b', lw=2, label=field)
|
||||
ax2.set_ylabel('$H_x$, field strength [A/m]')
|
||||
ax2.set_ylabel(field + ', field strength [A/m]')
|
||||
elif field == 'Hy':
|
||||
ax4.plot(time, fielddata,'b', lw=2, label=field)
|
||||
ax4.set_ylabel('$H_y$, field strength [A/m]')
|
||||
ax4.set_ylabel(field + ', field strength [A/m]')
|
||||
elif field == 'Hz':
|
||||
ax6.plot(time, fielddata,'b', lw=2, label=field)
|
||||
ax6.set_ylabel('$H_z$, field strength [A/m]')
|
||||
# Turn on grid
|
||||
[ax.grid() for ax in fig.axes]
|
||||
ax6.set_ylabel(field + ', field strength [A/m]')
|
||||
for ax in fig.axes:
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
# Save a PDF of the figure
|
||||
#fig.savefig(os.path.splitext(os.path.abspath(file))[0] + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||
|
在新工单中引用
屏蔽一个用户