你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 20:46:52 +08:00
Updated some comments.
这个提交包含在:
@@ -108,9 +108,9 @@ def run_opt_sim(args, inputfile, usernamespace):
|
||||
optparams, levels, levelsdiff = calculate_ranges_experiments(optparams, optparamsinit, levels, levelsopt, levelsdiff, OA, N, k, s, iteration)
|
||||
|
||||
# Run model for each experiment
|
||||
if args.mpi: # Mixed mode MPI/OpenMP - MPI task farm for models with each model parallelised with OpenMP
|
||||
if args.mpi: # Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
||||
run_mpi_sim(args, inputfile, usernamespace, optparams)
|
||||
else: # Standard behaviour - models run serially with each model parallelised with OpenMP
|
||||
else: # Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
||||
run_std_sim(args, inputfile, usernamespace, optparams)
|
||||
|
||||
# Calculate fitness value for each experiment
|
||||
@@ -132,7 +132,10 @@ def run_opt_sim(args, inputfile, usernamespace):
|
||||
# Run a confirmation experiment with optimal values
|
||||
args.n = 1
|
||||
usernamespace['number_model_runs'] = 1
|
||||
run_std_sim(args, inputfile, usernamespace, optparams)
|
||||
if args.mpi: # Mixed mode MPI with OpenMP or CUDA - MPI task farm for models with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
||||
run_mpi_sim(args, inputfile, usernamespace, optparams)
|
||||
else: # Standard behaviour - models run serially with each model parallelised with OpenMP (CPU) or CUDA (GPU)
|
||||
run_std_sim(args, inputfile, usernamespace, optparams)
|
||||
|
||||
# Calculate fitness value for confirmation experiment
|
||||
outputfile = inputfileparts[0] + '.out'
|
||||
@@ -152,9 +155,9 @@ def run_opt_sim(args, inputfile, usernamespace):
|
||||
break
|
||||
|
||||
# Stop optimisation if successive fitness values are within a percentage threshold
|
||||
fitnessvaluesthres = 0.1
|
||||
if iteration > 2:
|
||||
fitnessvaluesclose = (np.abs(fitnessvalueshist[iteration - 2] - fitnessvalueshist[iteration - 1]) / fitnessvalueshist[iteration - 1]) * 100
|
||||
fitnessvaluesthres = 0.1
|
||||
if fitnessvaluesclose < fitnessvaluesthres:
|
||||
taguchistr = '\n--- Taguchi optimisation stopped as successive fitness values within {}%'.format(fitnessvaluesthres)
|
||||
print('{} {}\n'.format(taguchistr, '-' * (get_terminal_width() - 1 - len(taguchistr))))
|
||||
|
在新工单中引用
屏蔽一个用户