Docs restructuring in preparation for descriptions on tools usage.
@@ -165,7 +165,7 @@ You can now view an image of the B-scan using the command:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
python -m tools.plot_Bscan cylinder_Bscan_2D_all.out Ez
|
||||
python -m tools.plot_Bscan cylinder_Bscan_2D_all.out --field Ez
|
||||
|
||||
:numref:`cylinder_Bscan_results` shows the B-scan (image of the Ez field). As expected a hyperbolic response is present from the metal cylinder.
|
||||
|
||||
|
7
docs/source/helper.rst
普通文件
@@ -0,0 +1,7 @@
|
||||
.. _helper:
|
||||
|
||||
****************
|
||||
Helper utilities
|
||||
****************
|
||||
|
||||
This section provides information on how to use the Python modules (in the ``tools`` package) that help manage gprMax files.
|
之前 宽度: | 高度: | 大小: 385 KiB 之后 宽度: | 高度: | 大小: 155 KiB |
之前 宽度: | 高度: | 大小: 252 KiB 之后 宽度: | 高度: | 大小: 113 KiB |
之前 宽度: | 高度: | 大小: 255 KiB 之后 宽度: | 高度: | 大小: 111 KiB |
之前 宽度: | 高度: | 大小: 273 KiB 之后 宽度: | 高度: | 大小: 121 KiB |
之前 宽度: | 高度: | 大小: 248 KiB 之后 宽度: | 高度: | 大小: 122 KiB |
之前 宽度: | 高度: | 大小: 273 KiB 之后 宽度: | 高度: | 大小: 110 KiB |
之前 宽度: | 高度: | 大小: 248 KiB 之后 宽度: | 高度: | 大小: 122 KiB |
之前 宽度: | 高度: | 大小: 266 KiB 之后 宽度: | 高度: | 大小: 105 KiB |
@@ -19,6 +19,13 @@ gprMax User Guide
|
||||
geometry_snapshots
|
||||
output
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Tools
|
||||
|
||||
plotting
|
||||
helper
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Advanced topics
|
||||
@@ -27,7 +34,7 @@ gprMax User Guide
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Help and Support
|
||||
:caption: Support
|
||||
|
||||
examples_2D
|
||||
examples_3D
|
||||
@@ -38,5 +45,4 @@ gprMax User Guide
|
||||
:maxdepth: 2
|
||||
:caption: Appendices
|
||||
|
||||
app_waveforms
|
||||
app_references
|
||||
references
|
@@ -61,21 +61,6 @@ Within each individual ``tx`` group is the following dataset:
|
||||
Viewing output
|
||||
==============
|
||||
|
||||
There are a number of free tools available to read HDF5 files. Also MATLAB has high- and low-level functions for reading and writing HDF5 files, i.e. ``h5info`` and ``h5disp`` are useful for returning information and displaying the contents of HDF5 files respectively. gprMax includes some Python modules (in the ``tools`` package) to help you view output data:
|
||||
|
||||
A-scans
|
||||
-------
|
||||
|
||||
* Plot A-scans using the Python module ``plot_Ascan.py``. The module uses matplotlib to plot the time history for the electric and magnetic field components for all receivers in a model (each receiver gets a separate figure window). Usage (from the top-level gprMax directory) is: ``python -m tools.plot_Ascan my_outputfile.out``.
|
||||
|
||||
* Plot A-scans using the MATLAB script ``plot_Ascan.m``. The script plots the time history for the electric and magnetic field components for all receivers in a model (each receiver gets a separate figure window).
|
||||
|
||||
B-scans
|
||||
-------
|
||||
|
||||
gprMax produces a separate output file for each trace (A-scan) in the B-scan.
|
||||
|
||||
* Combine the separate output files into one file using the Python module ``outputfiles_merge.py``. Usage (from the top-level gprMax directory) is: ``python -m tools.outputfiles_merge basefilename modelruns``, where ``basefilename`` is the base name file of the output file series, e.g. for ``myoutput1.out``, ``myoutput2.out`` the base file name would be ``myoutput``, and ``modelruns`` is the number of output files to combine.
|
||||
* Plot an image of the B-scan using the Python module ``plot_Bscan.py``. Usage (from the top-level gprMax directory) is: ``python -m tools.plot_Bscan my_outputfile.out field``, where ``field`` is the name of field to plot, e.g. ``Ex``, ``Ey`` or ``Ez``.
|
||||
There are a number of free tools available to read HDF5 files. Also MATLAB has high- and low-level functions for reading and writing HDF5 files, i.e. ``h5info`` and ``h5disp`` are useful for returning information and displaying the contents of HDF5 files respectively. gprMax includes some Python modules (in the ``tools`` package) to help you view output data. These are documented in the :ref:`tools section <plotting>`.
|
||||
|
||||
|
||||
|
@@ -1,13 +1,35 @@
|
||||
|
||||
.. _plotting:
|
||||
|
||||
********
|
||||
Plotting
|
||||
********
|
||||
|
||||
A-scans
|
||||
=======
|
||||
|
||||
* Plot A-scans using the Python module ``plot_Ascan.py``. The module uses matplotlib to plot the time history for the electric and magnetic field components for all receivers in a model (each receiver gets a separate figure window). Usage (from the top-level gprMax directory) is: ``python -m tools.plot_Ascan my_outputfile.out``.
|
||||
|
||||
* Plot A-scans using the MATLAB script ``plot_Ascan.m``. The script plots the time history for the electric and magnetic field components for all receivers in a model (each receiver gets a separate figure window).
|
||||
|
||||
B-scans
|
||||
=======
|
||||
|
||||
gprMax produces a separate output file for each trace (A-scan) in the B-scan.
|
||||
|
||||
* Combine the separate output files into one file using the Python module ``outputfiles_merge.py``. Usage (from the top-level gprMax directory) is: ``python -m tools.outputfiles_merge basefilename modelruns``, where ``basefilename`` is the base name file of the output file series, e.g. for ``myoutput1.out``, ``myoutput2.out`` the base file name would be ``myoutput``, and ``modelruns`` is the number of output files to combine.
|
||||
* Plot an image of the B-scan using the Python module ``plot_Bscan.py``. Usage (from the top-level gprMax directory) is: ``python -m tools.plot_Bscan my_outputfile.out field``, where ``field`` is the name of field to plot, e.g. ``Ex``, ``Ey`` or ``Ez``.
|
||||
|
||||
|
||||
.. _waveforms:
|
||||
|
||||
******************
|
||||
Built-in waveforms
|
||||
******************
|
||||
==================
|
||||
|
||||
This section provides definitions of the functions that are used to create the built-in waveforms. Example plots are shown using the parameters: amplitude of one, frequency of 1GHz, time window of 6ns, and a time step of 1.926ps.
|
||||
|
||||
gaussian
|
||||
========
|
||||
--------
|
||||
|
||||
A Gaussian waveform.
|
||||
|
||||
@@ -21,7 +43,7 @@ where :math:`I` is the current, :math:`\zeta = 2\pi^2f^2`, :math:`\chi=\frac{1}{
|
||||
|
||||
|
||||
gaussiandot
|
||||
===========
|
||||
-----------
|
||||
|
||||
First derivative of a Gaussian waveform.
|
||||
|
||||
@@ -35,7 +57,7 @@ where :math:`I` is the current, :math:`\zeta = 2\pi^2f^2`, :math:`\chi=\frac{1}{
|
||||
|
||||
|
||||
gaussiandotnorm
|
||||
===============
|
||||
---------------
|
||||
|
||||
Normalised first derivative of a Gaussian waveform.
|
||||
|
||||
@@ -49,7 +71,7 @@ where :math:`I` is the current, :math:`\zeta = 2\pi^2f^2`, :math:`\chi=\frac{1}{
|
||||
|
||||
|
||||
gaussiandotdot
|
||||
==============
|
||||
--------------
|
||||
|
||||
Second derivative of a Gaussian waveform.
|
||||
|
||||
@@ -63,7 +85,7 @@ where :math:`I` is the current, :math:`\zeta = \pi^2f^2`, :math:`\chi=\frac{\sqr
|
||||
|
||||
|
||||
gaussiandotdotnorm
|
||||
==================
|
||||
------------------
|
||||
|
||||
Normalised second derivative of a Gaussian waveform.
|
||||
|
||||
@@ -77,7 +99,7 @@ where :math:`I` is the current, :math:`\zeta = \pi^2f^2`, :math:`\chi=\frac{\sqr
|
||||
|
||||
|
||||
ricker
|
||||
======
|
||||
------
|
||||
|
||||
A Ricker (or Mexican Hat) waveform which is the negative, normalised second derivative of a Gaussian waveform.
|
||||
|
||||
@@ -91,7 +113,7 @@ where :math:`I` is the current, :math:`\zeta = \pi^2f^2`, :math:`\chi=\frac{\sqr
|
||||
|
||||
|
||||
sine
|
||||
====
|
||||
----
|
||||
|
||||
A single cycle of a sine waveform.
|
||||
|
||||
@@ -115,7 +137,7 @@ and
|
||||
|
||||
|
||||
contsine
|
||||
========
|
||||
--------
|
||||
|
||||
A continuous sine waveform. In order to avoid introducing noise into the calculation the amplitude of the waveform is modulated for the first cycle of the sine wave (ramp excitation).
|
||||
|
@@ -1,77 +0,0 @@
|
||||
# Copyright (C) 2015: The University of Edinburgh
|
||||
# Authors: Craig Warren and Antonis Giannopoulos
|
||||
#
|
||||
# This file is part of gprMax.
|
||||
#
|
||||
# gprMax is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# gprMax is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
import os, argparse
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from gprMax.waveforms import Waveform
|
||||
|
||||
|
||||
"""Plot waveforms that can be used for sources."""
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plot waveforms that can be used for sources.', usage='cd gprMax; python -m tools.plot_waveform type amp freq timewindow dt')
|
||||
parser.add_argument('type', help='type of waveform, e.g. gaussian, ricker etc...')
|
||||
parser.add_argument('amp', type=float, help='amplitude of waveform')
|
||||
parser.add_argument('freq', type=float, help='centre frequency of waveform')
|
||||
parser.add_argument('timewindow', type=float, help='time window to view waveform')
|
||||
parser.add_argument('dt', type=float, help='time step to view waveform')
|
||||
args = parser.parse_args()
|
||||
|
||||
w = Waveform()
|
||||
w.type = args.type
|
||||
w.amp = args.amp
|
||||
w.freq = args.freq
|
||||
timewindow = args.timewindow
|
||||
dt = args.dt
|
||||
|
||||
time = np.arange(0, timewindow, dt)
|
||||
waveform = np.zeros(len(time))
|
||||
timeiter = np.nditer(time, flags=['c_index'])
|
||||
|
||||
while not timeiter.finished:
|
||||
waveform[timeiter.index] = w.calculate_value(timeiter[0], dt)
|
||||
timeiter.iternext()
|
||||
|
||||
# Calculate frequency spectra of waveform
|
||||
power = 20 * np.log10(np.abs(np.fft.fft(waveform))**2)
|
||||
f = np.fft.fftfreq(power.size, d=dt)
|
||||
|
||||
# Shift powers so any spectra with negative DC component will start at zero
|
||||
power -= np.amax(power)
|
||||
|
||||
# Set plotting range to 4 * centre frequency
|
||||
pltrange = np.where(f > (4 * w.freq))[0][0]
|
||||
|
||||
# Plot waveform
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num=w.type, figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
ax1.plot(time, waveform, 'r', lw=2)
|
||||
ax1.set_xlabel('Time [ns]')
|
||||
ax1.set_ylabel('Amplitude')
|
||||
[label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65)) for label in ax1.get_xticklabels() + ax1.get_yticklabels()]
|
||||
|
||||
# Plot frequency spectra
|
||||
ax2.stem(f[0:pltrange]/1e9, power[0:pltrange],'b', lw=2)
|
||||
ax2.set_xlabel('Frequency [GHz]')
|
||||
ax2.set_ylabel('Power [dB]')
|
||||
[ax.grid() for ax in fig.axes] # Turn on grid
|
||||
plt.show()
|
||||
|
||||
# Save a PDF of the figure
|
||||
#fig.savefig(os.path.dirname(os.path.abspath(__file__)) + os.sep + w.type + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|