你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
Updated some comments, and changed an array of floats to uint8, as only storing optimisation levels, i.e. 0, 1 or 2
这个提交包含在:
@@ -80,7 +80,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
|
||||
# Lower, central, and upper values for each parameter
|
||||
levels = np.zeros((s, k), dtype=floattype)
|
||||
# Optimal lower, central, or upper value for each parameter
|
||||
levelsopt = np.zeros(k, dtype=floattype)
|
||||
levelsopt = np.zeros(k, dtype=np.uint8)
|
||||
# Difference used to set values for levels
|
||||
levelsdiff = np.zeros(k, dtype=floattype)
|
||||
# History of fitness values from each confirmation experiment
|
||||
@@ -400,7 +400,7 @@ def calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N,
|
||||
# Calculate optimal level from table of responses
|
||||
optlevel = np.where(responses == np.amax(responses))[0]
|
||||
|
||||
# If 2 experiments produce the same fitness value (this shouldn't happen if the fitness function is designed correctly) pick first level
|
||||
# If 2 experiments produce the same fitness value pick first level (this shouldn't happen if the fitness function is designed correctly)
|
||||
if len(optlevel) > 1:
|
||||
optlevel = optlevel[0]
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户