Updated some comments, and changed an array of floats to uint8, as only storing optimisation levels, i.e. 0, 1 or 2

这个提交包含在:
Craig Warren
2016-07-14 09:42:23 +01:00
父节点 456da769c8
当前提交 2b220df19f

查看文件

@@ -80,7 +80,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
# Lower, central, and upper values for each parameter
levels = np.zeros((s, k), dtype=floattype)
# Optimal lower, central, or upper value for each parameter
levelsopt = np.zeros(k, dtype=floattype)
levelsopt = np.zeros(k, dtype=np.uint8)
# Difference used to set values for levels
levelsdiff = np.zeros(k, dtype=floattype)
# History of fitness values from each confirmation experiment
@@ -400,7 +400,7 @@ def calculate_optimal_levels(optparams, levels, levelsopt, fitnessvalues, OA, N,
# Calculate optimal level from table of responses
optlevel = np.where(responses == np.amax(responses))[0]
# If 2 experiments produce the same fitness value (this shouldn't happen if the fitness function is designed correctly) pick first level
# If 2 experiments produce the same fitness value pick first level (this shouldn't happen if the fitness function is designed correctly)
if len(optlevel) > 1:
optlevel = optlevel[0]