Formatting tweaks.

这个提交包含在:
Craig Warren
2016-08-05 12:10:52 +01:00
父节点 ef016c41ff
当前提交 1352e209e2
共有 2 个文件被更改,包括 7 次插入6 次删除

查看文件

@@ -113,6 +113,7 @@ def run_main(args):
# Process for benchmarking simulation
elif args.benchmark:
run_benchmark_sim(args, inputfile, usernamespace)
print('\nSimulation completed.\n{}\n'.format('-' * get_terminal_size()[0]))
# Process for standard simulation
else:
@@ -443,8 +444,7 @@ def run_model(args, modelrun, numbermodelruns, inputfile, usernamespace):
outputfile = inputfileparts[0] + '.out'
else:
outputfile = inputfileparts[0] + str(modelrun) + '.out'
sys.stdout.write('\nOutput to file: {}\n'.format(outputfile))
sys.stdout.flush()
print('\nOutput to file: {}\n'.format(outputfile))
####################################
# Start - Main FDTD calculations #

查看文件

@@ -16,10 +16,11 @@
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
from collections import OrderedDict
import importlib
import os
import pickle
from collections import OrderedDict
from shutil import get_terminal_size
import numpy as np
@@ -68,7 +69,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
# Select OA
OA, N, cols, k, s, t = construct_OA(optparams)
print('\n{}\nTaguchi optimisation...\n'.format(68 * '*'))
print('\n{}\nTaguchi optimisation...\n'.format('-' * get_terminal_size()[0]))
print('\tOrthogonal array: {:g} experiments per iteration, {:g} parameters ({:g} will be used), {:g} levels, and strength {:g}'.format(N, cols, k, s, t))
tmp = [(k, v) for k, v in optparams.items()]
print('\tParameters to optimise with ranges: {}'.format(str(tmp).strip('[]')))
@@ -131,7 +132,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
# Rename confirmation experiment output file so that it is retained for each iteraction
os.rename(outputfile, os.path.splitext(outputfile)[0] + '_final' + str(iteration + 1) + '.out')
print('\nTaguchi optimisation, iteration {} completed. History of optimal parameter values {} and of fitness values {}'.format(iteration + 1, dict(optparamshist), fitnessvalueshist, 68 * '*'))
print('\nTaguchi optimisation, iteration {} completed. History of optimal parameter values {} and of fitness values {}'.format(iteration + 1, dict(optparamshist), fitnessvalueshist, '-' * get_terminal_size()[0]))
iteration += 1
# Stop optimisation if stopping criterion has been reached
@@ -154,7 +155,7 @@ def run_opt_sim(args, numbermodelruns, inputfile, usernamespace):
pickle.dump(fitnessvalueshist, f)
pickle.dump(optparamsinit, f)
print('\n{}\nTaguchi optimisation completed after {} iteration(s).\nHistory of optimal parameter values {} and of fitness values {}\n{}\n'.format(68 * '*', iteration, dict(optparamshist), fitnessvalueshist, 68 * '*'))
print('\n{}\nTaguchi optimisation completed after {} iteration(s).\nHistory of optimal parameter values {} and of fitness values {}\n{}\n'.format('-' * get_terminal_size()[0], iteration, dict(optparamshist), fitnessvalueshist, '-' * get_terminal_size()[0]))
def taguchi_code_blocks(inputfile, taguchinamespace):