Overhauled to simplify creation of materials with averaged dielectric properties.

这个提交包含在:
Craig Warren
2016-02-25 18:38:57 +00:00
父节点 6dc2463d71
当前提交 1346cbc825

查看文件

@@ -22,17 +22,96 @@ from gprMax.materials import Material
from gprMax.yee_cell_setget_rigid cimport get_rigid_Ex, get_rigid_Ey, get_rigid_Ez, get_rigid_Hx, get_rigid_Hy, get_rigid_Hz
cpdef void create_electric_average(int i, int j, int k, int numID1, int numID2, int numID3, int numID4, int componentID, G):
"""This function creates a new material by averaging the dielectric properties of the surrounding cells.
Args:
i, j, k (int): Cell coordinates.
numID1, numID2, numID3, numID4 (int): Numeric IDs for materials in surrounding cells.
componentID (int): Numeric ID for electric field component.
G (class): Grid class instance - holds essential parameters describing the model.
"""
# Make an ID composed of the names of the four materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
if material:
G.ID[componentID, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
G.ID[componentID, i, j, k] = newNumID
cpdef void create_magnetic_average(int i, int j, int k, int numID1, int numID2, int componentID, G):
"""This function creates a new material by averaging the dielectric properties of the surrounding cells.
Args:
i, j, k (int): Cell coordinates.
numID1, numID2 (int): Numeric IDs for materials in surrounding cells.
componentID (int): Numeric ID for electric field component.
G (class): Grid class instance - holds essential parameters describing the model.
"""
# Make an ID composed of the names of the two materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
if material:
G.ID[componentID, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
G.ID[componentID, i, j, k] = newNumID
cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:, :, :, ::1] rigidE, np.uint32_t[:, :, :, ::1] ID, G):
"""This function builds the electric field components in the ID array.
Args:
solid, rigid, ID (memoryviews): Access to solid, rigid and ID arrays
G (class): Grid class instance - holds essential parameters describing the model.
"""
cdef Py_ssize_t i, j, k
cdef int numID1, numID2, numID3, numID4
# Ex component
componentID = 0
for i in range(0, G.nx):
for j in range(1, G.ny):
for k in range(1, G.nz):
@@ -48,36 +127,13 @@ cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[0, i, j, k] = numID1
ID[componentID, i, j, k] = numID1
else:
# Averaging is required
# Make an ID composed of the names of the four materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
if material:
ID[0, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
ID[0, i, j, k] = newNumID
create_electric_average(i, j, k, numID1, numID2, numID3, numID4, componentID, G)
# Ey component
componentID = 1
for i in range(1, G.nx):
for j in range(0, G.ny):
for k in range(1, G.nz):
@@ -90,39 +146,16 @@ cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
numID2 = solid[i - 1, j, k]
numID3 = solid[i - 1, j, k - 1]
numID4 = solid[i, j, k - 1]
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[1, i, j, k] = numID1
ID[componentID, i, j, k] = numID1
else:
# Averaging is required
# Make an ID composed of the names of the four materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
if material:
ID[1, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
ID[1, i, j, k] = newNumID
create_electric_average(i, j, k, numID1, numID2, numID3, numID4, componentID, G)
# Ez component
componentID = 2
for i in range(1, G.nx):
for j in range(1, G.ny):
for k in range(0, G.nz):
@@ -138,34 +171,10 @@ cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[2, i, j, k] = numID1
ID[componentID, i, j, k] = numID1
else:
# Averaging is required
# Make an ID composed of the names of the four materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
if material:
ID[2, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
ID[2, i, j, k] = newNumID
create_electric_average(i, j, k, numID1, numID2, numID3, numID4, componentID, G)
cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:, :, :, ::1] rigidH, np.uint32_t[:, :, :, ::1] ID, G):
@@ -179,6 +188,7 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
cdef int numID1, numID2
# Hx component
componentID = 3
for i in range(1, G.nx):
for j in range(0, G.ny):
for k in range(0, G.nz):
@@ -192,35 +202,13 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
# If all values are the same no need to average
if numID1 == numID2:
ID[3, i, j, k] = numID1
ID[componentID, i, j, k] = numID1
else:
# Averaging is required
# Make an ID composed of the names of the two materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
if material:
ID[3, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
ID[3, i, j, k] = newNumID
create_magnetic_average(i, j, k, numID1, numID2, componentID, G)
# Hy component
componentID = 4
for i in range(0, G.nx):
for j in range(1, G.ny):
for k in range(0, G.nz):
@@ -237,32 +225,10 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
ID[4, i, j, k] = numID1
else:
# Averaging is required
# Make an ID composed of the names of the two materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
if material:
ID[4, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
ID[4, i, j, k] = newNumID
create_magnetic_average(i, j, k, numID1, numID2, componentID, G)
# Hz component
componentID = 5
for i in range(0, G.nx):
for j in range(0, G.ny):
for k in range(1, G.nz):
@@ -279,27 +245,5 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
ID[5, i, j, k] = numID1
else:
# Averaging is required
# Make an ID composed of the names of the two materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
if material:
ID[5, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID, G)
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
ID[5, i, j, k] = newNumID
create_magnetic_average(i, j, k, numID1, numID2, componentID, G)