你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
Overhauled to simplify creation of materials with averaged dielectric properties.
这个提交包含在:
@@ -22,17 +22,96 @@ from gprMax.materials import Material
|
||||
from gprMax.yee_cell_setget_rigid cimport get_rigid_Ex, get_rigid_Ey, get_rigid_Ez, get_rigid_Hx, get_rigid_Hy, get_rigid_Hz
|
||||
|
||||
|
||||
cpdef void create_electric_average(int i, int j, int k, int numID1, int numID2, int numID3, int numID4, int componentID, G):
|
||||
"""This function creates a new material by averaging the dielectric properties of the surrounding cells.
|
||||
|
||||
Args:
|
||||
i, j, k (int): Cell coordinates.
|
||||
numID1, numID2, numID3, numID4 (int): Numeric IDs for materials in surrounding cells.
|
||||
componentID (int): Numeric ID for electric field component.
|
||||
G (class): Grid class instance - holds essential parameters describing the model.
|
||||
"""
|
||||
|
||||
# Make an ID composed of the names of the four materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
|
||||
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
|
||||
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
|
||||
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
|
||||
|
||||
if material:
|
||||
G.ID[componentID, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
|
||||
G.ID[componentID, i, j, k] = newNumID
|
||||
|
||||
|
||||
cpdef void create_magnetic_average(int i, int j, int k, int numID1, int numID2, int componentID, G):
|
||||
"""This function creates a new material by averaging the dielectric properties of the surrounding cells.
|
||||
|
||||
Args:
|
||||
i, j, k (int): Cell coordinates.
|
||||
numID1, numID2 (int): Numeric IDs for materials in surrounding cells.
|
||||
componentID (int): Numeric ID for electric field component.
|
||||
G (class): Grid class instance - holds essential parameters describing the model.
|
||||
"""
|
||||
|
||||
# Make an ID composed of the names of the two materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
|
||||
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
|
||||
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
|
||||
|
||||
if material:
|
||||
G.ID[componentID, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
|
||||
G.ID[componentID, i, j, k] = newNumID
|
||||
|
||||
|
||||
cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:, :, :, ::1] rigidE, np.uint32_t[:, :, :, ::1] ID, G):
|
||||
"""This function builds the electric field components in the ID array.
|
||||
|
||||
Args:
|
||||
solid, rigid, ID (memoryviews): Access to solid, rigid and ID arrays
|
||||
G (class): Grid class instance - holds essential parameters describing the model.
|
||||
"""
|
||||
|
||||
cdef Py_ssize_t i, j, k
|
||||
cdef int numID1, numID2, numID3, numID4
|
||||
|
||||
# Ex component
|
||||
componentID = 0
|
||||
for i in range(0, G.nx):
|
||||
for j in range(1, G.ny):
|
||||
for k in range(1, G.nz):
|
||||
@@ -48,36 +127,13 @@ cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
|
||||
|
||||
# If all values are the same no need to average
|
||||
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
|
||||
ID[0, i, j, k] = numID1
|
||||
ID[componentID, i, j, k] = numID1
|
||||
else:
|
||||
# Averaging is required
|
||||
# Make an ID composed of the names of the four materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
|
||||
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
|
||||
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
|
||||
|
||||
if material:
|
||||
ID[0, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
ID[0, i, j, k] = newNumID
|
||||
create_electric_average(i, j, k, numID1, numID2, numID3, numID4, componentID, G)
|
||||
|
||||
# Ey component
|
||||
componentID = 1
|
||||
for i in range(1, G.nx):
|
||||
for j in range(0, G.ny):
|
||||
for k in range(1, G.nz):
|
||||
@@ -90,39 +146,16 @@ cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
|
||||
numID2 = solid[i - 1, j, k]
|
||||
numID3 = solid[i - 1, j, k - 1]
|
||||
numID4 = solid[i, j, k - 1]
|
||||
|
||||
|
||||
# If all values are the same no need to average
|
||||
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
|
||||
ID[1, i, j, k] = numID1
|
||||
ID[componentID, i, j, k] = numID1
|
||||
else:
|
||||
# Averaging is required
|
||||
# Make an ID composed of the names of the four materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
|
||||
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
|
||||
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
|
||||
|
||||
if material:
|
||||
ID[1, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
ID[1, i, j, k] = newNumID
|
||||
create_electric_average(i, j, k, numID1, numID2, numID3, numID4, componentID, G)
|
||||
|
||||
# Ez component
|
||||
componentID = 2
|
||||
for i in range(1, G.nx):
|
||||
for j in range(1, G.ny):
|
||||
for k in range(0, G.nz):
|
||||
@@ -138,34 +171,10 @@ cpdef void build_electric_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
|
||||
|
||||
# If all values are the same no need to average
|
||||
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
|
||||
ID[2, i, j, k] = numID1
|
||||
ID[componentID, i, j, k] = numID1
|
||||
else:
|
||||
# Averaging is required
|
||||
# Make an ID composed of the names of the four materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' + G.materials[numID3].ID + '+' + G.materials[numID4].ID
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
|
||||
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
|
||||
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
|
||||
|
||||
if material:
|
||||
ID[2, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er, G.materials[numID3].er, G.materials[numID4].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se, G.materials[numID3].se, G.materials[numID4].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr, G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm, G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
ID[2, i, j, k] = newNumID
|
||||
create_electric_average(i, j, k, numID1, numID2, numID3, numID4, componentID, G)
|
||||
|
||||
|
||||
cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:, :, :, ::1] rigidH, np.uint32_t[:, :, :, ::1] ID, G):
|
||||
@@ -179,6 +188,7 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
|
||||
cdef int numID1, numID2
|
||||
|
||||
# Hx component
|
||||
componentID = 3
|
||||
for i in range(1, G.nx):
|
||||
for j in range(0, G.ny):
|
||||
for k in range(0, G.nz):
|
||||
@@ -192,35 +202,13 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
|
||||
|
||||
# If all values are the same no need to average
|
||||
if numID1 == numID2:
|
||||
ID[3, i, j, k] = numID1
|
||||
ID[componentID, i, j, k] = numID1
|
||||
else:
|
||||
# Averaging is required
|
||||
# Make an ID composed of the names of the two materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
|
||||
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
|
||||
|
||||
if material:
|
||||
ID[3, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
ID[3, i, j, k] = newNumID
|
||||
create_magnetic_average(i, j, k, numID1, numID2, componentID, G)
|
||||
|
||||
# Hy component
|
||||
componentID = 4
|
||||
for i in range(0, G.nx):
|
||||
for j in range(1, G.ny):
|
||||
for k in range(0, G.nz):
|
||||
@@ -237,32 +225,10 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
|
||||
ID[4, i, j, k] = numID1
|
||||
else:
|
||||
# Averaging is required
|
||||
# Make an ID composed of the names of the two materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
|
||||
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
|
||||
|
||||
if material:
|
||||
ID[4, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
ID[4, i, j, k] = newNumID
|
||||
create_magnetic_average(i, j, k, numID1, numID2, componentID, G)
|
||||
|
||||
# Hz component
|
||||
componentID = 5
|
||||
for i in range(0, G.nx):
|
||||
for j in range(0, G.ny):
|
||||
for k in range(1, G.nz):
|
||||
@@ -279,27 +245,5 @@ cpdef void build_magnetic_components(np.uint32_t[:, :, ::1] solid, np.int8_t[:,
|
||||
ID[5, i, j, k] = numID1
|
||||
else:
|
||||
# Averaging is required
|
||||
# Make an ID composed of the names of the two materials that will be averaged
|
||||
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
|
||||
# Check if this material already exists
|
||||
tmp = requiredID.split('+')
|
||||
material = [x for x in G.materials if
|
||||
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
|
||||
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
|
||||
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
|
||||
|
||||
if material:
|
||||
ID[5, i, j, k] = material[0].numID
|
||||
else:
|
||||
# Create new material
|
||||
newNumID = len(G.materials)
|
||||
m = Material(newNumID, requiredID, G)
|
||||
# Create averaged constituents for material
|
||||
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
|
||||
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
|
||||
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
|
||||
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
|
||||
|
||||
# Append the new material object to the materials list
|
||||
G.materials.append(m)
|
||||
ID[5, i, j, k] = newNumID
|
||||
create_magnetic_average(i, j, k, numID1, numID2, componentID, G)
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户