你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 23:14:03 +08:00
Changed 'field' terminology to 'output'.
这个提交包含在:
@@ -20,19 +20,20 @@ import os, argparse
|
|||||||
import h5py
|
import h5py
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.gridspec as gridspec
|
||||||
|
|
||||||
from gprMax.exceptions import CmdInputError
|
from gprMax.exceptions import CmdInputError
|
||||||
|
|
||||||
"""Plots electric and magnetic fields from any receiver points in the given output file. Each receiver point is plotted in a new figure window."""
|
"""Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window."""
|
||||||
|
|
||||||
# Fields that can be plotted
|
# Outputs that can be plotted
|
||||||
fieldslist = ['Ex', 'Hx', 'Ey', 'Hy', 'Ez', 'Hz']
|
outputslist = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz']
|
||||||
|
|
||||||
# Parse command line arguments
|
# Parse command line arguments
|
||||||
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
||||||
parser.add_argument('outputfile', help='name of output file including path')
|
parser.add_argument('outputfile', help='name of output file including path')
|
||||||
parser.add_argument('--fields', help='list of fields to be plotted, i.e. Ex Ey Ez', default=fieldslist, nargs='+')
|
parser.add_argument('--outputs', help='list of outputs to be plotted, i.e. Ex Ey Ez', default=outputslist, nargs='+')
|
||||||
parser.add_argument('-fft', action='store_true', default=False, help='plot FFT (single field component must be specified)')
|
parser.add_argument('-fft', action='store_true', default=False, help='plot FFT (single output must be specified)')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Open output file and read some attributes
|
# Open output file and read some attributes
|
||||||
@@ -44,28 +45,28 @@ iterations = f.attrs['Iterations']
|
|||||||
time = np.arange(0, dt * iterations, dt)
|
time = np.arange(0, dt * iterations, dt)
|
||||||
time = time / 1e-9
|
time = time / 1e-9
|
||||||
|
|
||||||
# Check for valid field names
|
# Check for valid output names
|
||||||
for field in args.fields:
|
for output in args.outputs:
|
||||||
if field not in fieldslist:
|
if output not in outputslist:
|
||||||
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(field))
|
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(output))
|
||||||
|
|
||||||
# Check for single field component when doing a FFT
|
# Check for single output component when doing a FFT
|
||||||
if args.fft:
|
if args.fft:
|
||||||
if not len(args.fields) == 1:
|
if not len(args.outputs) == 1:
|
||||||
raise CmdInputError('A single field component must be specified when using the -fft option')
|
raise CmdInputError('A single output must be specified when using the -fft option')
|
||||||
|
|
||||||
# New plot for each receiver
|
# New plot for each receiver
|
||||||
for rx in range(1, nrx + 1):
|
for rx in range(1, nrx + 1):
|
||||||
path = '/rxs/rx' + str(rx) + '/'
|
path = '/rxs/rx' + str(rx) + '/'
|
||||||
|
|
||||||
# If only a single field is required, create one subplot
|
# If only a single output is required, create one subplot
|
||||||
if len(args.fields) == 1:
|
if len(args.outputs) == 1:
|
||||||
fielddata = f[path + args.fields[0]][:]
|
outputdata = f[path + args.outputs[0]][:]
|
||||||
|
|
||||||
# Plotting if FFT required
|
# Plotting if FFT required
|
||||||
if args.fft:
|
if args.fft:
|
||||||
# Calculate magnitude of frequency spectra of waveform
|
# Calculate magnitude of frequency spectra of waveform
|
||||||
power = 10 * np.log10(np.abs(np.fft.fft(fielddata))**2)
|
power = 10 * np.log10(np.abs(np.fft.fft(outputdata))**2)
|
||||||
freqs = np.fft.fftfreq(power.size, d=dt)
|
freqs = np.fft.fftfreq(power.size, d=dt)
|
||||||
|
|
||||||
# Shift powers so that frequency with maximum power is at zero decibels
|
# Shift powers so that frequency with maximum power is at zero decibels
|
||||||
@@ -75,11 +76,11 @@ for rx in range(1, nrx + 1):
|
|||||||
pltrange = np.where((np.amax(power) - power) > 60)[0][0] + 1
|
pltrange = np.where((np.amax(power) - power) > 60)[0][0] + 1
|
||||||
pltrange = np.s_[0:pltrange]
|
pltrange = np.s_[0:pltrange]
|
||||||
|
|
||||||
# Plot time history of field component
|
# Plot time history of output component
|
||||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
line1 = ax1.plot(time, fielddata, 'r', lw=2, label=args.fields[0])
|
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=args.outputs[0])
|
||||||
ax1.set_xlabel('Time [ns]')
|
ax1.set_xlabel('Time [ns]')
|
||||||
ax1.set_ylabel(args.fields[0] + ' field strength [V/m]')
|
ax1.set_ylabel(args.outputs[0] + ' field strength [V/m]')
|
||||||
ax1.set_xlim([0, np.amax(time)])
|
ax1.set_xlim([0, np.amax(time)])
|
||||||
ax1.grid()
|
ax1.grid()
|
||||||
|
|
||||||
@@ -94,10 +95,10 @@ for rx in range(1, nrx + 1):
|
|||||||
ax2.grid()
|
ax2.grid()
|
||||||
|
|
||||||
# Change colours and labels for magnetic field components
|
# Change colours and labels for magnetic field components
|
||||||
if 'H' in args.fields[0]:
|
if 'H' in args.outputs[0]:
|
||||||
plt.setp(line1, color='b')
|
plt.setp(line1, color='b')
|
||||||
plt.setp(line2, color='b')
|
plt.setp(line2, color='b')
|
||||||
plt.setp(ax1, ylabel=args.fields[0] + ' field strength [A/m]')
|
plt.setp(ax1, ylabel=args.outputs[0] + ' field strength [A/m]')
|
||||||
plt.setp(stemlines, 'color', 'b')
|
plt.setp(stemlines, 'color', 'b')
|
||||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||||
|
|
||||||
@@ -105,38 +106,61 @@ for rx in range(1, nrx + 1):
|
|||||||
|
|
||||||
# Plotting if no FFT required
|
# Plotting if no FFT required
|
||||||
else:
|
else:
|
||||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.outputs[0] + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
line = ax.plot(time, fielddata,'r', lw=2, label=args.fields[0])
|
line = ax.plot(time, outputdata,'r', lw=2, label=args.outputs[0])
|
||||||
ax.set_xlim([0, np.amax(time)])
|
ax.set_xlim([0, np.amax(time)])
|
||||||
ax.grid()
|
ax.grid()
|
||||||
|
|
||||||
if 'H' in args.fields[0]:
|
if 'H' in args.outputs[0]:
|
||||||
plt.setp(line, color='b')
|
plt.setp(line, color='b')
|
||||||
plt.setp(ax, ylabel=args.fields[0] + ' field strength [A/m]')
|
plt.setp(ax, ylabel=args.outputs[0] + ', field strength [A/m]')
|
||||||
|
elif 'I' in args.outputs[0]:
|
||||||
|
plt.setp(line, color='b')
|
||||||
|
plt.setp(ax, ylabel=args.outputs[0] + ', current [A]')
|
||||||
|
|
||||||
# If multiple fields required, creat all six subplots and populate only the specified ones
|
# If multiple fields required, creat all nine subplots and populate only the specified ones
|
||||||
else:
|
else:
|
||||||
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
for field in args.fields:
|
gs = gridspec.GridSpec(3, 3, hspace=0.3)
|
||||||
fielddata = f[path + field][:]
|
# fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
if field == 'Ex':
|
for output in args.outputs:
|
||||||
ax1.plot(time, fielddata,'r', lw=2, label=field)
|
outputdata = f[path + output][:]
|
||||||
ax1.set_ylabel(field + ', field strength [V/m]')
|
if output == 'Ex':
|
||||||
elif field == 'Ey':
|
ax = plt.subplot(gs[0, 0])
|
||||||
ax3.plot(time, fielddata,'r', lw=2, label=field)
|
ax.plot(time, outputdata,'r', lw=2, label=output)
|
||||||
ax3.set_ylabel(field + ', field strength [V/m]')
|
ax.set_ylabel(output + ', field strength [V/m]')
|
||||||
elif field == 'Ez':
|
elif output == 'Ey':
|
||||||
ax5.plot(time, fielddata,'r', lw=2, label=field)
|
ax = plt.subplot(gs[1, 0])
|
||||||
ax5.set_ylabel(field + ', field strength [V/m]')
|
ax.plot(time, outputdata,'r', lw=2, label=output)
|
||||||
elif field == 'Hx':
|
ax.set_ylabel(output + ', field strength [V/m]')
|
||||||
ax2.plot(time, fielddata,'b', lw=2, label=field)
|
elif output == 'Ez':
|
||||||
ax2.set_ylabel(field + ', field strength [A/m]')
|
ax = plt.subplot(gs[2, 0])
|
||||||
elif field == 'Hy':
|
ax.plot(time, outputdata,'r', lw=2, label=output)
|
||||||
ax4.plot(time, fielddata,'b', lw=2, label=field)
|
ax.set_ylabel(output + ', field strength [V/m]')
|
||||||
ax4.set_ylabel(field + ', field strength [A/m]')
|
elif output == 'Hx':
|
||||||
elif field == 'Hz':
|
ax = plt.subplot(gs[0, 1])
|
||||||
ax6.plot(time, fielddata,'b', lw=2, label=field)
|
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||||
ax6.set_ylabel(field + ', field strength [A/m]')
|
ax.set_ylabel(output + ', field strength [A/m]')
|
||||||
|
elif output == 'Hy':
|
||||||
|
ax = plt.subplot(gs[1, 1])
|
||||||
|
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||||
|
ax.set_ylabel(output + ', field strength [A/m]')
|
||||||
|
elif output == 'Hz':
|
||||||
|
ax = plt.subplot(gs[2, 1])
|
||||||
|
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||||
|
ax.set_ylabel(output + ', field strength [A/m]')
|
||||||
|
elif output == 'Ix':
|
||||||
|
ax = plt.subplot(gs[0, 2])
|
||||||
|
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||||
|
ax.set_ylabel(output + ', current [A]')
|
||||||
|
elif output == 'Iy':
|
||||||
|
ax = plt.subplot(gs[1, 2])
|
||||||
|
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||||
|
ax.set_ylabel(output + ', current [A]')
|
||||||
|
elif output == 'Iz':
|
||||||
|
ax = plt.subplot(gs[2, 2])
|
||||||
|
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||||
|
ax.set_ylabel(output + ', current [A]')
|
||||||
for ax in fig.axes:
|
for ax in fig.axes:
|
||||||
ax.set_xlim([0, np.amax(time)])
|
ax.set_xlim([0, np.amax(time)])
|
||||||
ax.grid()
|
ax.grid()
|
||||||
|
@@ -25,39 +25,41 @@ from gprMax.exceptions import CmdInputError
|
|||||||
|
|
||||||
"""Plots a B-scan image."""
|
"""Plots a B-scan image."""
|
||||||
|
|
||||||
# Fields that can be plotted
|
# Outputs that can be plotted
|
||||||
fieldslist = ['Ex', 'Hx', 'Ey', 'Hy', 'Ez', 'Hz']
|
outputslist = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz']
|
||||||
|
|
||||||
# Parse command line arguments
|
# Parse command line arguments
|
||||||
parser = argparse.ArgumentParser(description='Plots B-scan.', usage='cd gprMax; python -m tools.plot_Bscan outputfile --field fieldcomponent')
|
parser = argparse.ArgumentParser(description='Plots B-scan.', usage='cd gprMax; python -m tools.plot_Bscan outputfile --field fieldcomponent')
|
||||||
parser.add_argument('outputfile', help='name of output file including path')
|
parser.add_argument('outputfile', help='name of output file including path')
|
||||||
parser.add_argument('--field', help='name of field to be plotted, i.e. Ex Ey Ez')
|
parser.add_argument('--output', help='name of output to be plotted, i.e. Ex Ey Ez')
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
# Check for valid field name
|
# Check for valid output name
|
||||||
if args.field not in fieldslist:
|
if args.output not in outputslist:
|
||||||
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(args.field))
|
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz Ix Iy Iz'.format(args.output))
|
||||||
|
|
||||||
# Open output file and read some attributes
|
# Open output file and read some attributes
|
||||||
f = h5py.File(args.outputfile, 'r')
|
f = h5py.File(args.outputfile, 'r')
|
||||||
path = '/rxs/rx1'
|
path = '/rxs/rx1'
|
||||||
data = f[path + '/' + args.field]
|
outputdata = f[path + '/' + args.output]
|
||||||
|
|
||||||
# Check that there is more than one A-scan present
|
# Check that there is more than one A-scan present
|
||||||
if data.shape[1] == 1:
|
if outputdata.shape[1] == 1:
|
||||||
raise CmdInputError('{} contains only a single A-scan.'.format(args.outputfile))
|
raise CmdInputError('{} contains only a single A-scan.'.format(args.outputfile))
|
||||||
|
|
||||||
# Plot B-scan image
|
# Plot B-scan image
|
||||||
fig = plt.figure(num=args.outputfile, figsize=(20, 10), facecolor='w', edgecolor='w')
|
fig = plt.figure(num=args.outputfile, figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||||
plt.imshow(data, extent=[0, data.shape[1], data.shape[0]*f.attrs['dt']*1e9, 0], interpolation='nearest', aspect='auto', cmap='seismic', vmin=-np.amax(np.abs(data)), vmax=np.amax(np.abs(data)))
|
plt.imshow(outputdata, extent=[0, outputdata.shape[1], outputdata.shape[0]*f.attrs['dt']*1e9, 0], interpolation='nearest', aspect='auto', cmap='seismic', vmin=-np.amax(np.abs(outputdata)), vmax=np.amax(np.abs(outputdata)))
|
||||||
plt.xlabel('Trace number')
|
plt.xlabel('Trace number')
|
||||||
plt.ylabel('Time [ns]')
|
plt.ylabel('Time [ns]')
|
||||||
plt.grid()
|
plt.grid()
|
||||||
cb = plt.colorbar()
|
cb = plt.colorbar()
|
||||||
if 'E' in args.field:
|
if 'E' in args.output:
|
||||||
cb.set_label('Field strength [V/m]')
|
cb.set_label('Field strength [V/m]')
|
||||||
elif 'H' in args.field:
|
elif 'H' in args.output:
|
||||||
cb.set_label('Field strength [A/m]')
|
cb.set_label('Field strength [A/m]')
|
||||||
|
elif 'I' in args.output:
|
||||||
|
cb.set_label('Current [A]')
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
#fig.savefig(os.path.splitext(os.path.abspath(file))[0] + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
#fig.savefig(os.path.splitext(os.path.abspath(file))[0] + '.pdf', dpi=None, format='pdf', bbox_inches='tight', pad_inches=0.1)
|
||||||
|
在新工单中引用
屏蔽一个用户