你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
Changed 'field' terminology to 'output'.
这个提交包含在:
@@ -20,19 +20,20 @@ import os, argparse
|
||||
import h5py
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.gridspec as gridspec
|
||||
|
||||
from gprMax.exceptions import CmdInputError
|
||||
|
||||
"""Plots electric and magnetic fields from any receiver points in the given output file. Each receiver point is plotted in a new figure window."""
|
||||
"""Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window."""
|
||||
|
||||
# Fields that can be plotted
|
||||
fieldslist = ['Ex', 'Hx', 'Ey', 'Hy', 'Ez', 'Hz']
|
||||
# Outputs that can be plotted
|
||||
outputslist = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz', 'Ix', 'Iy', 'Iz']
|
||||
|
||||
# Parse command line arguments
|
||||
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
||||
parser = argparse.ArgumentParser(description='Plots electric and magnetic fields and currents from all receiver points in the given output file. Each receiver point is plotted in a new figure window.', usage='cd gprMax; python -m tools.plot_Ascan outputfile')
|
||||
parser.add_argument('outputfile', help='name of output file including path')
|
||||
parser.add_argument('--fields', help='list of fields to be plotted, i.e. Ex Ey Ez', default=fieldslist, nargs='+')
|
||||
parser.add_argument('-fft', action='store_true', default=False, help='plot FFT (single field component must be specified)')
|
||||
parser.add_argument('--outputs', help='list of outputs to be plotted, i.e. Ex Ey Ez', default=outputslist, nargs='+')
|
||||
parser.add_argument('-fft', action='store_true', default=False, help='plot FFT (single output must be specified)')
|
||||
args = parser.parse_args()
|
||||
|
||||
# Open output file and read some attributes
|
||||
@@ -44,28 +45,28 @@ iterations = f.attrs['Iterations']
|
||||
time = np.arange(0, dt * iterations, dt)
|
||||
time = time / 1e-9
|
||||
|
||||
# Check for valid field names
|
||||
for field in args.fields:
|
||||
if field not in fieldslist:
|
||||
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(field))
|
||||
# Check for valid output names
|
||||
for output in args.outputs:
|
||||
if output not in outputslist:
|
||||
raise CmdInputError('{} not allowed. Options are: Ex Ey Ez Hx Hy Hz'.format(output))
|
||||
|
||||
# Check for single field component when doing a FFT
|
||||
# Check for single output component when doing a FFT
|
||||
if args.fft:
|
||||
if not len(args.fields) == 1:
|
||||
raise CmdInputError('A single field component must be specified when using the -fft option')
|
||||
if not len(args.outputs) == 1:
|
||||
raise CmdInputError('A single output must be specified when using the -fft option')
|
||||
|
||||
# New plot for each receiver
|
||||
for rx in range(1, nrx + 1):
|
||||
path = '/rxs/rx' + str(rx) + '/'
|
||||
|
||||
# If only a single field is required, create one subplot
|
||||
if len(args.fields) == 1:
|
||||
fielddata = f[path + args.fields[0]][:]
|
||||
# If only a single output is required, create one subplot
|
||||
if len(args.outputs) == 1:
|
||||
outputdata = f[path + args.outputs[0]][:]
|
||||
|
||||
# Plotting if FFT required
|
||||
if args.fft:
|
||||
# Calculate magnitude of frequency spectra of waveform
|
||||
power = 10 * np.log10(np.abs(np.fft.fft(fielddata))**2)
|
||||
power = 10 * np.log10(np.abs(np.fft.fft(outputdata))**2)
|
||||
freqs = np.fft.fftfreq(power.size, d=dt)
|
||||
|
||||
# Shift powers so that frequency with maximum power is at zero decibels
|
||||
@@ -75,11 +76,11 @@ for rx in range(1, nrx + 1):
|
||||
pltrange = np.where((np.amax(power) - power) > 60)[0][0] + 1
|
||||
pltrange = np.s_[0:pltrange]
|
||||
|
||||
# Plot time history of field component
|
||||
# Plot time history of output component
|
||||
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line1 = ax1.plot(time, fielddata, 'r', lw=2, label=args.fields[0])
|
||||
line1 = ax1.plot(time, outputdata, 'r', lw=2, label=args.outputs[0])
|
||||
ax1.set_xlabel('Time [ns]')
|
||||
ax1.set_ylabel(args.fields[0] + ' field strength [V/m]')
|
||||
ax1.set_ylabel(args.outputs[0] + ' field strength [V/m]')
|
||||
ax1.set_xlim([0, np.amax(time)])
|
||||
ax1.grid()
|
||||
|
||||
@@ -94,10 +95,10 @@ for rx in range(1, nrx + 1):
|
||||
ax2.grid()
|
||||
|
||||
# Change colours and labels for magnetic field components
|
||||
if 'H' in args.fields[0]:
|
||||
if 'H' in args.outputs[0]:
|
||||
plt.setp(line1, color='b')
|
||||
plt.setp(line2, color='b')
|
||||
plt.setp(ax1, ylabel=args.fields[0] + ' field strength [A/m]')
|
||||
plt.setp(ax1, ylabel=args.outputs[0] + ' field strength [A/m]')
|
||||
plt.setp(stemlines, 'color', 'b')
|
||||
plt.setp(markerline, 'markerfacecolor', 'b', 'markeredgecolor', 'b')
|
||||
|
||||
@@ -105,38 +106,61 @@ for rx in range(1, nrx + 1):
|
||||
|
||||
# Plotting if no FFT required
|
||||
else:
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.fields[0] + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, fielddata,'r', lw=2, label=args.fields[0])
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]', ylabel=args.outputs[0] + ' field strength [V/m]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
line = ax.plot(time, outputdata,'r', lw=2, label=args.outputs[0])
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
||||
if 'H' in args.fields[0]:
|
||||
if 'H' in args.outputs[0]:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax, ylabel=args.fields[0] + ' field strength [A/m]')
|
||||
plt.setp(ax, ylabel=args.outputs[0] + ', field strength [A/m]')
|
||||
elif 'I' in args.outputs[0]:
|
||||
plt.setp(line, color='b')
|
||||
plt.setp(ax, ylabel=args.outputs[0] + ', current [A]')
|
||||
|
||||
# If multiple fields required, creat all six subplots and populate only the specified ones
|
||||
# If multiple fields required, creat all nine subplots and populate only the specified ones
|
||||
else:
|
||||
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
for field in args.fields:
|
||||
fielddata = f[path + field][:]
|
||||
if field == 'Ex':
|
||||
ax1.plot(time, fielddata,'r', lw=2, label=field)
|
||||
ax1.set_ylabel(field + ', field strength [V/m]')
|
||||
elif field == 'Ey':
|
||||
ax3.plot(time, fielddata,'r', lw=2, label=field)
|
||||
ax3.set_ylabel(field + ', field strength [V/m]')
|
||||
elif field == 'Ez':
|
||||
ax5.plot(time, fielddata,'r', lw=2, label=field)
|
||||
ax5.set_ylabel(field + ', field strength [V/m]')
|
||||
elif field == 'Hx':
|
||||
ax2.plot(time, fielddata,'b', lw=2, label=field)
|
||||
ax2.set_ylabel(field + ', field strength [A/m]')
|
||||
elif field == 'Hy':
|
||||
ax4.plot(time, fielddata,'b', lw=2, label=field)
|
||||
ax4.set_ylabel(field + ', field strength [A/m]')
|
||||
elif field == 'Hz':
|
||||
ax6.plot(time, fielddata,'b', lw=2, label=field)
|
||||
ax6.set_ylabel(field + ', field strength [A/m]')
|
||||
fig, ax = plt.subplots(subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
gs = gridspec.GridSpec(3, 3, hspace=0.3)
|
||||
# fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(nrows=3, ncols=2, sharex=False, sharey='col', subplot_kw=dict(xlabel='Time [ns]'), num='rx' + str(rx), figsize=(20, 10), facecolor='w', edgecolor='w')
|
||||
for output in args.outputs:
|
||||
outputdata = f[path + output][:]
|
||||
if output == 'Ex':
|
||||
ax = plt.subplot(gs[0, 0])
|
||||
ax.plot(time, outputdata,'r', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', field strength [V/m]')
|
||||
elif output == 'Ey':
|
||||
ax = plt.subplot(gs[1, 0])
|
||||
ax.plot(time, outputdata,'r', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', field strength [V/m]')
|
||||
elif output == 'Ez':
|
||||
ax = plt.subplot(gs[2, 0])
|
||||
ax.plot(time, outputdata,'r', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', field strength [V/m]')
|
||||
elif output == 'Hx':
|
||||
ax = plt.subplot(gs[0, 1])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', field strength [A/m]')
|
||||
elif output == 'Hy':
|
||||
ax = plt.subplot(gs[1, 1])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', field strength [A/m]')
|
||||
elif output == 'Hz':
|
||||
ax = plt.subplot(gs[2, 1])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', field strength [A/m]')
|
||||
elif output == 'Ix':
|
||||
ax = plt.subplot(gs[0, 2])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', current [A]')
|
||||
elif output == 'Iy':
|
||||
ax = plt.subplot(gs[1, 2])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', current [A]')
|
||||
elif output == 'Iz':
|
||||
ax = plt.subplot(gs[2, 2])
|
||||
ax.plot(time, outputdata,'b', lw=2, label=output)
|
||||
ax.set_ylabel(output + ', current [A]')
|
||||
for ax in fig.axes:
|
||||
ax.set_xlim([0, np.amax(time)])
|
||||
ax.grid()
|
||||
|
在新工单中引用
屏蔽一个用户