文件
gpr-sidl-inv/README.md
葛峻恺 d940d34214 update README.md.
Signed-off-by: 葛峻恺 <202115006@mail.sdu.edu.cn>
2025-04-04 02:53:57 +00:00

46 行
2.6 KiB
Markdown

### **🔍 Source-Independent Full Waveform Inversion for GPR using Deep Learning**
A PyTorch-based implementation of a source-independent full waveform inversion (FWI) framework tailored for ground-penetrating radar (GPR) data, leveraging deep learning techniques to reconstruct subsurface permittivity models. This method is particularly suitable for GPR investigation in permafrost environments or undulating strata.
### 📌 Features:
🚀 Source-independent inversion: The model learns to invert waveforms even with varying GPR sources.
🧠 Noise simulation: The dataset can simulate real noisy environments.
🌍 Using gprMax to establish reliable datasets in three-dimensional simulation scenarios
📉 Support initial model or none, time-depth conversion, depth-time conversion, GSSI data conversion and other functions...
GPR-SIDL-inv/
├── dataset/ # Training/testing data and synthetic datasets
├── field_data/ # Network architectures
├── gprMax/ # Data processing, waveform simulation, etc.
├── IMG/ # Training script
├── impulse/ # Inversion / prediction script
├── log/ # Custom loss functions
├── Network/ # Custom loss functions
├── readgssi/ # Inversion / prediction script
├── SAVE/ # Custom loss functions
├── time_result_csv/ # Custom loss functions
├── utils/ # Custom loss functions
├── 1_model_generator.py # Randomly generate in files as needed to support forward modeling of gprMax in 3D media.
├── 2_forward_simulation.py # Run the forward modeling program to generate A-scan results
├── 3_combine_dataset.py # Filter all A-scan data and generate a dataset
├── 4_gssi_data_convert.py # Convert the dzt file of the measured GSSI GPR to CSV format
├── 5_data_preprocess.py # Preprocess the measured raw data (dewow, direct wave removal, static correction, etc.)
├── 6_extract_impulse.py # Extract the true source wavelet from the processed data
├── 7_network_train.py # Training a deep learning network for inversion
├── 8_prediction.py # Predicting real measured data
├── 9_time_depth_convert.py # Convert the predicted results into the deep domain through integration
├── config.yaml # Configuration file
├── requirements.txt # Python dependencies
└── README.md # This file