update README.md.

Signed-off-by: 葛峻恺 <202115006@mail.sdu.edu.cn>
这个提交包含在:
葛峻恺
2025-04-08 09:27:08 +00:00
提交者 Gitee
父节点 890f0002bd
当前提交 e429611bd1

查看文件

@@ -2,6 +2,9 @@
A PyTorch-based implementation of a source-independent full waveform inversion (FWI) framework tailored for ground-penetrating radar (GPR) data, leveraging deep learning techniques to reconstruct subsurface permittivity models. This method is particularly suitable for GPR investigation in permafrost environments or undulating strata.
Program name: GPR-SIDL-inv
Program size: 98.6 Mb.
Program language: Python 3.10.4
### 📌 Features:
@@ -18,33 +21,37 @@ A PyTorch-based implementation of a source-independent full waveform inversion (
GPR-SIDL-inv/
├── dataset/ # Training/testing data and synthetic datasets
├── dataset/ # Training/testing data and synthetic datasets
├── data.csv # Already generated dataset (70MHz Ricker wavelet)
├── label.csv # Already generated dataset (70MHz Ricker wavelet)
├── field_data/ # Used to store field data for inversion
├── IMG/ # Used for storing data processing and inversion result graphs
├── impulse/ # Used to store simulated and measured source wavelet files
├── log/ # operation log
├── Network/ # Used for storing network models and data loading programs
├── readgssi/ # Software package for reading and converting raw data
├── SAVE/ # Save the trained model
├── time_result_csv/ # Inverse results in the time domain
├── utils/ # tool kit
├── Model.py/ # network model with transformer
├── label.csv # Already generated dataset (70MHz Ricker wavelet)
├── Mydataset.py/ # Loading and preprocessing datasets
Note: The pre generated data.csv and label.csv datasets have been compressed into the dataset.rar file package
├── field_data/ # Used to store field data for inversion
├── IMG/ # Used for storing data processing and inversion result graphs
├── impulse/ # Used to store simulated and measured source wavelet files
├── Log/ # operation log
├── Network/ # Used for storing network models and data loading programs
├── readgssi/ # Software package for reading and converting raw data
├── SAVE/ # Save the trained model
├── time_result_csv/ # Inverse results in the time domain
├── utils/ # tool kit
├── Model.py/ # network model with transformer
├── Mydataset.py/ # Loading and preprocessing datasets
├── plot.py/ # the tool kit for plotting the 2D image
├── 1_model_generator.py # Randomly generate in files as needed to support forward modeling of gprMax in 3D media.
@@ -64,13 +71,22 @@ GPR-SIDL-inv/
├── 9_time_depth_convert.py # Convert the predicted results into the deep domain through integration
├── config.yaml # Configuration file
├── config.yaml # Configuration file, used to define all paths, variables, and parameters
├── requirements.txt # Python dependencies
└── README.md # This file
### 💡 Hardware requirements
Please select the appropriate device according to your requirements. We conducted tests on a Dell laptop with an Intel(R) Core (TM) i7-12700H CPU (maximum physical memory of 15.7 GiB.) and an NVIDIA RTX 3070 Ti Laptop GPU (maximum physical memory of 7.8 GiB).
### 📚 Software requirements
No external software. Python dependencies are listed in the requirements.txt.
### 🛠️ Installation
### 1. Clone the repository
@@ -79,9 +95,9 @@ git clone https://gitee.com/sduem/gpr-sidl-inv
cd GPR-FWI-DeepLearning
### 2. Install gprMax (optional but recommended). link: https://www.gprmax.com/
### 2. Install gprMax (optional but recommended).
https://www.gprmax.com/
link: https://www.gprmax.com/
### 3. Install dependencies