你已经派生过 gpr-sidl-inv
镜像自地址
https://gitee.com/sduem/gpr-sidl-inv.git
已同步 2025-08-03 10:56:50 +08:00
68
README.md
68
README.md
@@ -2,6 +2,9 @@
|
||||
|
||||
A PyTorch-based implementation of a source-independent full waveform inversion (FWI) framework tailored for ground-penetrating radar (GPR) data, leveraging deep learning techniques to reconstruct subsurface permittivity models. This method is particularly suitable for GPR investigation in permafrost environments or undulating strata.
|
||||
|
||||
Program name: GPR-SIDL-inv
|
||||
Program size: 98.6 Mb.
|
||||
Program language: Python 3.10.4
|
||||
|
||||
### 📌 Features:
|
||||
|
||||
@@ -18,33 +21,37 @@ A PyTorch-based implementation of a source-independent full waveform inversion (
|
||||
|
||||
GPR-SIDL-inv/
|
||||
|
||||
├── dataset/ # Training/testing data and synthetic datasets
|
||||
├── dataset/ # Training/testing data and synthetic datasets
|
||||
|
||||
├── data.csv # Already generated dataset (70MHz Ricker wavelet)
|
||||
|
||||
├── label.csv # Already generated dataset (70MHz Ricker wavelet)
|
||||
|
||||
├── field_data/ # Used to store field data for inversion
|
||||
|
||||
├── IMG/ # Used for storing data processing and inversion result graphs
|
||||
|
||||
├── impulse/ # Used to store simulated and measured source wavelet files
|
||||
|
||||
├── log/ # operation log
|
||||
|
||||
├── Network/ # Used for storing network models and data loading programs
|
||||
|
||||
├── readgssi/ # Software package for reading and converting raw data
|
||||
|
||||
├── SAVE/ # Save the trained model
|
||||
|
||||
├── time_result_csv/ # Inverse results in the time domain
|
||||
|
||||
├── utils/ # tool kit
|
||||
|
||||
├── Model.py/ # network model with transformer
|
||||
├── label.csv # Already generated dataset (70MHz Ricker wavelet)
|
||||
|
||||
├── Mydataset.py/ # Loading and preprocessing datasets
|
||||
(Note: The pre generated data.csv and label.csv datasets have been compressed into the dataset.rar file package)
|
||||
|
||||
├── field_data/ # Used to store field data for inversion
|
||||
|
||||
├── IMG/ # Used for storing data processing and inversion result graphs
|
||||
|
||||
├── impulse/ # Used to store simulated and measured source wavelet files
|
||||
|
||||
├── Log/ # operation log
|
||||
|
||||
├── Network/ # Used for storing network models and data loading programs
|
||||
|
||||
├── readgssi/ # Software package for reading and converting raw data
|
||||
|
||||
├── SAVE/ # Save the trained model
|
||||
|
||||
├── time_result_csv/ # Inverse results in the time domain
|
||||
|
||||
├── utils/ # tool kit
|
||||
|
||||
├── Model.py/ # network model with transformer
|
||||
|
||||
├── Mydataset.py/ # Loading and preprocessing datasets
|
||||
|
||||
├── plot.py/ # the tool kit for plotting the 2D image
|
||||
|
||||
├── 1_model_generator.py # Randomly generate in files as needed to support forward modeling of gprMax in 3D media.
|
||||
|
||||
@@ -64,13 +71,22 @@ GPR-SIDL-inv/
|
||||
|
||||
├── 9_time_depth_convert.py # Convert the predicted results into the deep domain through integration
|
||||
|
||||
├── config.yaml # Configuration file
|
||||
├── config.yaml # Configuration file, used to define all paths, variables, and parameters
|
||||
|
||||
├── requirements.txt # Python dependencies
|
||||
|
||||
└── README.md # This file
|
||||
|
||||
|
||||
### 💡 Hardware requirements:
|
||||
|
||||
Please select the appropriate device according to your requirements. We conducted tests on a Dell laptop with an Intel(R) Core (TM) i7-12700H CPU (maximum physical memory of 15.7 GiB.) and an NVIDIA RTX 3070 Ti Laptop GPU (maximum physical memory of 7.8 GiB).
|
||||
|
||||
### 📚 Software requirements
|
||||
|
||||
No external software. Python dependencies are listed in the requirements.txt.
|
||||
|
||||
|
||||
### 🛠️ Installation
|
||||
|
||||
### 1. Clone the repository
|
||||
@@ -79,9 +95,9 @@ git clone https://gitee.com/sduem/gpr-sidl-inv
|
||||
|
||||
cd GPR-FWI-DeepLearning
|
||||
|
||||
### 2. Install gprMax (optional but recommended). link: https://www.gprmax.com/
|
||||
### 2. Install gprMax (optional but recommended).
|
||||
|
||||
https://www.gprmax.com/
|
||||
link: https://www.gprmax.com/
|
||||
|
||||
### 3. Install dependencies
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户