你已经派生过 gpr-sidl-inv
镜像自地址
https://gitee.com/sduem/gpr-sidl-inv.git
已同步 2025-08-02 18:36:51 +08:00
二进制文件未显示。
二进制文件未显示。
二进制文件未显示。
93
utils/layers_generator.py
普通文件
93
utils/layers_generator.py
普通文件
@@ -0,0 +1,93 @@
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
def generate_layers_1d(grid_size, num_layers, min_size, transition_size, first_layer_minsize, first_layer_maxsize):
|
||||
"""Generate a 1D stratified model with transition zones."""
|
||||
usable_size = grid_size - (num_layers - 1) * transition_size
|
||||
grid = np.zeros(grid_size, dtype=int)
|
||||
remaining_size = usable_size
|
||||
layer_sizes = []
|
||||
|
||||
# Determine layer sizes
|
||||
for i in range(num_layers - 1):
|
||||
if i == 0:
|
||||
size = random.randint(first_layer_minsize, first_layer_maxsize)
|
||||
else:
|
||||
size = random.randint(min_size, remaining_size - (num_layers - i - 1) * min_size)
|
||||
layer_sizes.append(size)
|
||||
remaining_size -= size
|
||||
layer_sizes.append(remaining_size)
|
||||
|
||||
# Assign layers and transitions to grid
|
||||
current_position = 0
|
||||
for i, size in enumerate(layer_sizes):
|
||||
grid[current_position:current_position + size] = i + 1
|
||||
current_position += size
|
||||
if i < num_layers - 1:
|
||||
grid[current_position:current_position + transition_size] = 0 # 0 indicates transition zone
|
||||
current_position += transition_size
|
||||
|
||||
return grid
|
||||
|
||||
def assign_permittivity(grid, num_layers, permittivity_range=(1, 81), transition_size=5):
|
||||
"""Assign permittivity values to layers and interpolate values across transition zones."""
|
||||
permittivity_grid = np.zeros_like(grid, dtype=float)
|
||||
layer_permittivities = {}
|
||||
|
||||
# Assign permittivity to each layer
|
||||
for layer in range(1, num_layers + 1):
|
||||
value = random.uniform(*permittivity_range)
|
||||
layer_permittivities[layer] = value
|
||||
permittivity_grid[grid == layer] = value
|
||||
|
||||
# Smooth transitions between layers using linear interpolation
|
||||
for i in range(1, num_layers):
|
||||
start_val = layer_permittivities[i]
|
||||
end_val = layer_permittivities[i + 1]
|
||||
transition_start = np.where(grid == 0)[0][(i - 1) * transition_size]
|
||||
for j in range(transition_size):
|
||||
t = j / (transition_size - 1)
|
||||
permittivity_grid[transition_start + j] = (1 - t) * start_val + t * end_val
|
||||
|
||||
return permittivity_grid
|
||||
|
||||
def assign_permittivity_with_smooth_transition(grid, num_layers, first_layer_eps_range, permittivity_range=(1, 81), transition_size=5):
|
||||
"""Assign permittivity values using smooth cosine transition between layers."""
|
||||
permittivity_grid = np.zeros_like(grid, dtype=float)
|
||||
layer_permittivities = {}
|
||||
|
||||
for layer in range(1, num_layers + 1):
|
||||
if layer == 1:
|
||||
value = random.randint(*first_layer_eps_range)
|
||||
else:
|
||||
value = random.uniform(*permittivity_range)
|
||||
layer_permittivities[layer] = value
|
||||
permittivity_grid[grid == layer] = value
|
||||
|
||||
# Cosine-smooth transitions
|
||||
for i in range(1, num_layers):
|
||||
start_val = layer_permittivities[i]
|
||||
end_val = layer_permittivities[i + 1]
|
||||
transition_start = np.where(grid == 0)[0][(i - 1) * transition_size]
|
||||
for j in range(transition_size):
|
||||
t = j / (transition_size - 1)
|
||||
smooth = 0.5 * (1 - np.cos(np.pi * t))
|
||||
permittivity_grid[transition_start + j] = start_val + (end_val - start_val) * smooth
|
||||
|
||||
return permittivity_grid
|
||||
|
||||
def assign_integer_values(permittivity_grid):
|
||||
"""Convert permittivity values to discrete integers representing unique material zones."""
|
||||
layer_id = np.zeros_like(permittivity_grid, dtype=float)
|
||||
unique_permittivities = {}
|
||||
integer_value = 0
|
||||
|
||||
for idx, val in enumerate(permittivity_grid):
|
||||
val = round(val, 5)
|
||||
if idx == 0 or val != round(permittivity_grid[idx - 1], 5):
|
||||
unique_permittivities[val] = integer_value
|
||||
integer_value += 1
|
||||
layer_id[idx] = unique_permittivities[val]
|
||||
|
||||
return layer_id
|
||||
|
135
utils/plot.py
普通文件
135
utils/plot.py
普通文件
@@ -0,0 +1,135 @@
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
from torchsummary import summary
|
||||
from torchvision.utils import make_grid, save_image
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.ndimage
|
||||
# Add parent directory to path for config import
|
||||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
||||
from config import Network_train_Config as cfg
|
||||
|
||||
|
||||
def plot_BSCAN_data(data, path, line_length=100, time_length=200, ratio=1):
|
||||
"""
|
||||
Plot the inverted permittivity constant map and adjust the colormap range based on the ratio parameter.
|
||||
If ratio < 1, values exceeding ratio * max(abs(data)) will be saturated at the colormap maximum.
|
||||
|
||||
:param data: 2D NumPy array (N, M), where N is time/depth and M is survey line direction
|
||||
:param path: Path to save the output image
|
||||
:param line_length: Survey line length in meters (default: 400m)
|
||||
:param time_length: Time range in nanoseconds (default: 200ns)
|
||||
:param ratio: Scaling factor for colormap range (default: 1)
|
||||
"""
|
||||
num_points, num_lines = data.shape
|
||||
|
||||
# Compute the maximum absolute value for normalization
|
||||
max_abs = np.max(np.abs(data))
|
||||
vmin = -ratio * max_abs
|
||||
vmax = ratio * max_abs
|
||||
|
||||
# Set font style
|
||||
plt.rcParams.update({'font.family': 'Times New Roman', 'font.size': 20})
|
||||
|
||||
# Plot the permittivity image
|
||||
plt.figure(figsize=(10, 4))
|
||||
im = plt.imshow(data, aspect='auto', cmap='gray',
|
||||
extent=[0, line_length, time_length, 0],
|
||||
vmin=vmin, vmax=vmax)
|
||||
|
||||
# Configure axis labels and ticks
|
||||
plt.xlabel('Distance (m)', fontsize=20)
|
||||
plt.xticks([0, 20, 40, 60, 80, 100, line_length])
|
||||
plt.ylabel('Time (ns)', fontsize=20)
|
||||
plt.yticks([0, 50, 100, 150, 200, time_length])
|
||||
|
||||
# Customize tick and border appearance
|
||||
plt.tick_params(axis='both', direction='in', width=1)
|
||||
for spine in plt.gca().spines.values():
|
||||
spine.set_linewidth(1)
|
||||
|
||||
# Remove grid lines, adjust layout, and save the figure
|
||||
plt.grid(False)
|
||||
plt.tight_layout()
|
||||
plt.savefig(path, dpi=300)
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
def plot_permittivity_constant(data, path, line_length=100, time_length=200):
|
||||
"""
|
||||
Plot the inverted permittivity constant.
|
||||
|
||||
:param data: 2D NumPy array, shape (N, M), where N is depth (or time) and M is distance along the survey line.
|
||||
:param path: Path to save the output image.
|
||||
:param line_length: Survey line length (meters), default is 100m.
|
||||
:param time_length: Time range (nanoseconds), default is 200ns.
|
||||
"""
|
||||
num_points, num_lines = data.shape
|
||||
|
||||
# Configure font settings
|
||||
plt.rcParams.update({'font.family': 'Times New Roman', 'font.size': 20})
|
||||
|
||||
# Plot the permittivity map
|
||||
plt.figure(figsize=(12, 4))
|
||||
im = plt.imshow(data, aspect='auto', cmap='rainbow_r', extent=[0, 100, 200, 0], vmin=9, vmax=26)
|
||||
|
||||
# Set axis labels and ticks
|
||||
plt.xlabel('Distance (m)', fontsize=20)
|
||||
plt.xticks([0, 20, 40, 60, 80, 100])
|
||||
plt.ylabel('Time (ns)', fontsize=20)
|
||||
plt.yticks([0, 50, 100, 150, 200])
|
||||
|
||||
# Add colorbar
|
||||
cbar = plt.colorbar(im)
|
||||
cbar.set_label('Permittivity', fontsize=20)
|
||||
|
||||
# Adjust axis formatting
|
||||
plt.tick_params(axis='both', direction='in', width=1)
|
||||
for spine in plt.gca().spines.values():
|
||||
spine.set_linewidth(1)
|
||||
|
||||
plt.grid(False)
|
||||
plt.tight_layout()
|
||||
plt.savefig(path, dpi=300)
|
||||
plt.show()
|
||||
|
||||
|
||||
def plot_depth_permittivity_constant(data, path, line_length=100, time_length=200):
|
||||
"""
|
||||
Plot the inverted permittivity constant as a 2D colormap.
|
||||
|
||||
:param data: 2D NumPy array (depth/time, distance), representing permittivity values.
|
||||
:param path: File path to save the output image.
|
||||
:param line_length: Length of the survey line in meters (default: 100m).
|
||||
:param time_length: Time range in nanoseconds (default: 200ns).
|
||||
"""
|
||||
num_points, num_lines = data.shape
|
||||
|
||||
# Set font properties
|
||||
plt.rcParams.update({'font.family': 'Times New Roman', 'font.size': 20})
|
||||
|
||||
# Create the plot
|
||||
plt.figure(figsize=(12, 4))
|
||||
im = plt.imshow(data, aspect='auto', cmap='rainbow_r', extent=[0, line_length, time_length, 0], vmin=8, vmax=30)
|
||||
|
||||
# Label axes and set ticks
|
||||
plt.xlabel('Distance (m)', fontsize=20)
|
||||
plt.xticks([0, 20, 40, 60, 80, 100])
|
||||
plt.ylabel('Time (ns)', fontsize=20)
|
||||
plt.yticks([0, 2, 4, 6, 8])
|
||||
|
||||
# Add colorbar
|
||||
cbar = plt.colorbar(im)
|
||||
cbar.set_label('Permittivity', fontsize=20)
|
||||
|
||||
# Format axis appearance
|
||||
plt.tick_params(axis='both', direction='in', width=1)
|
||||
for spine in plt.gca().spines.values():
|
||||
spine.set_linewidth(1)
|
||||
|
||||
plt.grid(False)
|
||||
plt.tight_layout()
|
||||
plt.savefig(path, dpi=300)
|
||||
plt.show()
|
63
utils/train_val_lr.py
普通文件
63
utils/train_val_lr.py
普通文件
@@ -0,0 +1,63 @@
|
||||
import os
|
||||
import sys
|
||||
import torch
|
||||
from torchsummary import summary
|
||||
from torchvision.utils import make_grid, save_image
|
||||
|
||||
# Add parent directory to path for config import
|
||||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
||||
from config import Network_train_Config as cfg
|
||||
|
||||
# Training function
|
||||
def train(train_loader, model, loss_func, optimizer, epoch):
|
||||
model.train()
|
||||
total_loss = 0
|
||||
batch_count = 0
|
||||
|
||||
for data, label in train_loader:
|
||||
data = data.cuda()
|
||||
label = label.cuda()
|
||||
|
||||
output = model(data.type(torch.cuda.FloatTensor))
|
||||
loss = loss_func(output.float(), label.float())
|
||||
|
||||
total_loss += loss.item()
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
batch_count += 1
|
||||
|
||||
avg_loss = total_loss / batch_count
|
||||
print(f"Epoch {epoch}: Training Loss = {avg_loss:.6f}")
|
||||
return avg_loss
|
||||
|
||||
# Validation function
|
||||
def validate(val_loader, model, loss_func):
|
||||
model.eval()
|
||||
total_loss = 0
|
||||
batch_count = 0
|
||||
|
||||
with torch.no_grad():
|
||||
for data, label in val_loader:
|
||||
data = data.cuda()
|
||||
label = label.cuda()
|
||||
|
||||
output = model(data.type(torch.cuda.FloatTensor))
|
||||
loss = loss_func(output.float(), label.float())
|
||||
|
||||
total_loss += loss.item()
|
||||
batch_count += 1
|
||||
|
||||
avg_loss = total_loss / batch_count
|
||||
return avg_loss
|
||||
|
||||
# Learning rate scheduler
|
||||
def adjust_learning_rate(optimizer, epoch, start_lr):
|
||||
"""Exponentially decays learning rate based on epoch and configured decay rate."""
|
||||
lr = start_lr * (cfg.lr_decrease_rate ** epoch)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
return lr
|
||||
|
||||
|
||||
|
在新工单中引用
屏蔽一个用户