update README.md.

Signed-off-by: 葛峻恺 <202115006@mail.sdu.edu.cn>
这个提交包含在:
葛峻恺
2025-04-09 02:38:20 +00:00
提交者 Gitee
父节点 ff6d7411cf
当前提交 56e5492e78

查看文件

@@ -1,6 +1,6 @@
### **🔍 Source-Independent Full Waveform Inversion for GPR using Deep Learning**
A PyTorch-based implementation of a source-independent full waveform inversion (FWI) framework tailored for ground-penetrating radar (GPR) data, leveraging deep learning techniques to reconstruct subsurface permittivity models. This method is particularly suitable for GPR investigation in permafrost environments or undulating strata.
A PyTorch-based implementation of a source-independent full waveform inversion (FWI) framework tailored for ground-penetrating radar (GPR) data, leveraging deep learning techniques to reconstruct subsurface permittivity models. This method is suitable for GPR investigation in permafrost environments or undulating strata.
Program name: GPR-SIDL-inv
@@ -78,7 +78,7 @@ GPR-SIDL-inv/
├── 9_time_depth_convert.py # Convert the predicted results into the deep domain through integration
├── config.py # Configuration file, used to define all paths, variables, and parameters
├── config.py # Configuration file, used to define all paths, variables, and parameters
├── requirements.txt # Python dependencies