Signed-off-by: 葛峻恺 <202115006@mail.sdu.edu.cn>
这个提交包含在:
葛峻恺
2025-04-07 12:34:47 +00:00
提交者 Gitee
父节点 b654a7d2b4
当前提交 35f79e0899
共有 4 个文件被更改,包括 308 次插入0 次删除

137
Network/Model.py 普通文件
查看文件

@@ -0,0 +1,137 @@
import torch
import torch.nn as nn
# Define 1D convolution with kernel size 5
def conv1d_5(inplanes, outplanes, stride=1):
return nn.Conv1d(inplanes, outplanes, kernel_size=5, stride=stride,
padding=2, bias=False)
# Transformer-based self-attention module
class TransformerLayer(nn.Module):
def __init__(self, embed_dim, num_heads, ff_dim, dropout=0.1):
super(TransformerLayer, self).__init__()
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout, batch_first=True)
self.norm1 = nn.LayerNorm(embed_dim)
self.ffn = nn.Sequential(
nn.Linear(embed_dim, ff_dim),
nn.ReLU(),
nn.Linear(ff_dim, embed_dim)
)
self.norm2 = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = x.permute(0, 2, 1) # [B, C, L] -> [B, L, C]
attn_output, _ = self.attention(x, x, x)
x = self.norm1(x + self.dropout(attn_output))
ffn_output = self.ffn(x)
x = self.norm2(x + self.dropout(ffn_output))
x = x.permute(0, 2, 1) # [B, L, C] -> [B, C, L]
return x
# Downsampling Block using ResNet-style skip connections
class Block(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None, bn=False):
super(Block, self).__init__()
self.bn = bn
self.conv1 = conv1d_5(inplanes, planes, stride)
self.bn1 = nn.BatchNorm1d(planes)
self.relu = nn.ReLU(inplace=False)
self.conv2 = conv1d_5(planes, planes)
self.bn2 = nn.BatchNorm1d(planes)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
if self.bn:
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
if self.bn:
out = self.bn2(out)
out = self.relu(out)
if self.downsample is not None:
residual = self.downsample(x)
out = out + residual
out = self.relu(out)
return out
# Upsampling Block
class Decoder_block(nn.Module):
def __init__(self, inplanes, outplanes, kernel_size=5, stride=5):
super(Decoder_block, self).__init__()
self.upsample = nn.ConvTranspose1d(inplanes, outplanes,
kernel_size=kernel_size, stride=stride, bias=False)
self.conv1 = conv1d_5(inplanes, outplanes)
self.relu = nn.ReLU(inplace=False)
self.conv2 = conv1d_5(outplanes, outplanes)
def forward(self, x1, x2):
x1 = self.upsample(x1)
out = torch.cat((x1, x2), dim=1)
out = self.conv1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.relu(out)
return out
# Main Model
class Model(nn.Module):
def __init__(self, inplanes=1, outplanes=2, layers=[2, 2, 2, 2]):
super(Model, self).__init__()
self.inplanes = inplanes
self.outplanes = outplanes
self.encoder1 = self._make_encoder(Block, 32, layers[0], 5)
self.encoder2 = self._make_encoder(Block, 64, layers[1], 5)
self.encoder3 = self._make_encoder(Block, 128, layers[2], 5)
self.encoder4 = self._make_encoder(Block, 256, layers[3], 4)
# Self-Attention Layer between Encoder and Decoder
self.self_attention = TransformerLayer(embed_dim=256, num_heads=8, ff_dim=512)
self.decoder3 = Decoder_block(256, 128, stride=4, kernel_size=4)
self.decoder2 = Decoder_block(128, 64)
self.decoder1 = Decoder_block(64, 32)
self.conv1x1 = nn.ConvTranspose1d(32, outplanes, kernel_size=5, stride=5, bias=False)
def _make_encoder(self, block, planes, blocks, stride=1):
downsample = None
if self.inplanes != planes or stride != 1:
downsample = nn.Conv1d(self.inplanes, planes, kernel_size=1, stride=stride, bias=False)
layers = [block(self.inplanes, planes, stride, downsample)]
self.inplanes = planes
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
down1 = self.encoder1(x)
down2 = self.encoder2(down1)
down3 = self.encoder3(down2)
down4 = self.encoder4(down3)
# Apply self-attention layer
attention_out = self.self_attention(down4)
up3 = self.decoder3(attention_out, down3)
up2 = self.decoder2(up3, down2)
up1 = self.decoder1(up2, down1)
out = self.conv1x1(up1)
return out
# Test function to verify input-output compatibility
if __name__ == "__main__":
model = Model(inplanes=1, outplanes=1, layers=[3, 3, 3, 3])
model.eval()
image = torch.randn(1, 1, 1000)
with torch.no_grad():
output = model(image)
print(output.size())

171
Network/MyDataset.py 普通文件
查看文件

@@ -0,0 +1,171 @@
import os
import sys
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from scipy.ndimage import zoom, gaussian_filter1d
import torch.nn.functional as F
# Add parent directory to path for config import
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from config import Network_train_Config as cfg
data_length=cfg.data_length
def convolve_signals(signal1, signal2):
"""
Perform cyclic convolution using FFT. Output length is max(len(signal1), len(signal2)).
"""
len_signal = max(len(signal1), len(signal2))
return np.fft.ifft(np.fft.fft(signal1, len_signal) * np.fft.fft(signal2, len_signal)).real
def apply_exponential_gain(data, gain_factor):
"""
Apply exponential gain to a signal.
"""
data = np.asarray(data)
indices = np.arange(len(data))
gain = np.exp(gain_factor * indices)
return data * gain
def shift_data_to_end(data, n):
"""
Shift the first n elements of a 1D array to the end.
"""
if n < 0 or n > len(data):
raise ValueError("Shift length n must be within data length range.")
return np.concatenate((data[n:], data[:n]))
def shift_data_to_front(data, n):
"""
Shift the last n elements of a 1D array to the front.
"""
if n < 0 or n > len(data):
raise ValueError("Shift length n must be within data length range.")
return np.concatenate((data[-n:], data[:-n]))
class MyDataset(Dataset):
def __init__(self, data_file, label_file, impulse_field_file, impulse_sim_file, mode='train',
check=False, noise_coff=cfg.noise_coff, initial_params=None):
super(MyDataset, self).__init__()
self.mode = mode
self.check = check
self.noise_coff = noise_coff
self.data = np.delete(np.loadtxt(data_file, delimiter=","), [0], axis=0)
self.labels = np.delete(np.loadtxt(label_file, delimiter=","), [0], axis=0)
if self.mode in ['train', 'apply']:
self.impulse_field = np.loadtxt(impulse_field_file, delimiter=",")
self.impulse_sim = np.loadtxt(impulse_sim_file, delimiter=",")
else:
raise ValueError("Mode must be either 'train' or 'apply'")
if self.mode == 'apply':
self.initial_model = self.generate_initial_model(*initial_params, total_length=data_length)
self.data = self.data.T
self.labels = self.labels.T
def __len__(self):
return self.data.shape[0]
def __getitem__(self, index):
data_raw = self.data[index]
label_data = self.labels[index]
impulse_field = self.impulse_field
impulse_sim = self.impulse_sim
data_raw = zoom(data_raw, data_length / len(data_raw))
label_data = zoom(label_data, data_length / len(label_data))
impulse_field = zoom(impulse_field, data_length / len(impulse_field))
impulse_sim = zoom(impulse_sim, data_length / len(impulse_sim))
if self.mode == 'train':
data_gained = apply_exponential_gain(data_raw, 0.00)
data_noise1 = np.random.normal(0, self.noise_coff * np.max(abs(data_gained)), size=data_gained.shape)
data_noise2 = np.random.normal(0, self.noise_coff * np.max(abs(data_gained)), size=data_gained.shape)
data_noise1 = convolve_signals(impulse_field, data_noise1)
data_noise1 = convolve_signals(impulse_sim, data_noise1)
data_noise2 = convolve_signals(impulse_sim, data_noise2)
data_gained = convolve_signals(impulse_field, data_gained)
data_gained = shift_data_to_end(data_gained, cfg.shift_distance)
data_noised = data_gained + self.noise_coff * data_noise1 + self.noise_coff * data_noise2
data_data = data_noised
elif self.mode == 'apply':
data_meta = data_raw
data_data = convolve_signals(impulse_sim, data_meta)
data_data = shift_data_to_end(data_data, cfg.shift_distance)
data_data = data_data / np.max(abs(data_data))
# Construct initial model
if self.mode == 'train':
initial_model = np.full(data_length, label_data[1])
elif self.mode == 'apply':
initial_model = self.initial_model
initial_model = zoom(initial_model, data_length / len(initial_model))
initial_model = gaussian_filter1d(initial_model, sigma=data_length / 5)
data_data = data_data / np.max(abs(data_data)) * 0.5
if self.check:
plt.figure(figsize=(10, 7))
titles = [
('label_data', label_data),
('initial_model', initial_model),
('data_raw', data_raw),
('data_noise1', data_noise1),
('data_noise2', data_noise2),
('impulse_field', impulse_field),
('impulse_sim', impulse_sim),
('data_without_noise', data_gained),
('data_noised', data_data),
]
for i, (title, signal) in enumerate(titles):
plt.subplot(9, 1, i + 1)
plt.plot(signal, label=title, color='blue')
plt.grid(alpha=0.3)
plt.legend()
plt.show()
# Convert to PyTorch tensors
data_data = torch.from_numpy(data_data).float().unsqueeze(0)
label_data = torch.from_numpy(label_data).float().unsqueeze(0)
initial_model = torch.from_numpy(initial_model).float().unsqueeze(0)
data_data = data_data + 0.5
label_data = label_data / cfg.max_permittivity
initial_model = initial_model / cfg.max_permittivity
input_data = torch.cat((data_data, initial_model), dim=0)
return input_data, label_data
def generate_initial_model(self, epsilon, thickness, total_length=data_length):
"""
Generate an initial layered model.
Parameters:
- epsilon: List of permittivity values for each layer.
- thickness: Corresponding layer thicknesses.
- total_length: Total model length.
Returns:
- A 1D numpy array of length total_length.
"""
layer_points = (np.array(thickness) / np.sum(thickness) * total_length).astype(int)
diff = total_length - np.sum(layer_points)
layer_points[0] += diff # Adjust rounding difference
initial_model = np.concatenate([np.full(points, eps) for eps, points in zip(epsilon, layer_points)])
return initial_model

二进制文件未显示。

二进制文件未显示。