你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-07 04:56:51 +08:00
148 行
5.7 KiB
Python
148 行
5.7 KiB
Python
# Copyright (C) 2016, Craig Warren
|
|
#
|
|
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
|
|
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
|
|
#
|
|
# Please use the attribution at http://dx.doi.org/10.1016/j.sigpro.2016.04.010
|
|
|
|
import argparse
|
|
import logging
|
|
import os
|
|
|
|
import gprMax.config as config
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# Parse command line arguments
|
|
parser = argparse.ArgumentParser(
|
|
description="Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.",
|
|
usage="cd gprMax; python -m user_libs.AntennaPatterns.plot_fields numpyfile",
|
|
)
|
|
parser.add_argument("numpyfile", help="name of numpy file including path")
|
|
# parser.add_argument('hertzian', help='name of numpy file including path')
|
|
args = parser.parse_args()
|
|
patterns = np.load(args.numpyfile)
|
|
# hertzian = np.load(args.hertzian)
|
|
|
|
########################################
|
|
# User configurable parameters
|
|
|
|
# Pattern type (E or H)
|
|
type = "H"
|
|
|
|
# Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous)
|
|
epsr = 5
|
|
|
|
# Observation radii and angles
|
|
radii = np.linspace(0.1, 0.3, 20)
|
|
theta = np.linspace(3, 357, 60)
|
|
theta = np.deg2rad(np.append(theta, theta[0])) # Append start value to close circle
|
|
|
|
# Centre frequency of modelled antenna
|
|
f = 1.5e9 # GSSI 1.5GHz antenna model
|
|
|
|
# Largest dimension of antenna transmitting element
|
|
D = 0.060 # GSSI 1.5GHz antenna model
|
|
|
|
# Minimum value for plotting energy and ring steps (dB)
|
|
min = -72
|
|
step = 12
|
|
########################################
|
|
|
|
# Critical angle and velocity
|
|
if epsr:
|
|
mr = 1
|
|
z1 = np.sqrt(mr / epsr) * config.sim_config.em_consts["z0"]
|
|
v1 = config.sim_config.em_consts["c"] / np.sqrt(epsr)
|
|
thetac = np.round(np.rad2deg(np.arcsin(v1 / config.sim_config.em_consts["c"])))
|
|
wavelength = v1 / f
|
|
|
|
# Print some useful information
|
|
logger.info("Centre frequency: {} GHz".format(f / 1e9))
|
|
if epsr:
|
|
logger.info("Critical angle for Er {} is {} degrees".format(epsr, thetac))
|
|
logger.info("Wavelength: {:.3f} m".format(wavelength))
|
|
logger.info(
|
|
"Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)".format(
|
|
radii[0], radii[0] / wavelength, radii[-1], radii[-1] / wavelength
|
|
)
|
|
)
|
|
logger.info(
|
|
"Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m".format(
|
|
0.62 * np.sqrt((D**3) / wavelength)
|
|
)
|
|
)
|
|
logger.info(
|
|
"Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m".format(
|
|
(2 * D**2) / wavelength
|
|
)
|
|
)
|
|
|
|
# Setup figure
|
|
fig = plt.figure(num=args.numpyfile, figsize=(8, 8), facecolor="w", edgecolor="w")
|
|
ax = plt.subplot(111, polar=True)
|
|
cmap = plt.cm.get_cmap("rainbow")
|
|
ax.set_prop_cycle("color", [cmap(i) for i in np.linspace(0, 1, len(radii))])
|
|
|
|
# Critical angle window and air/subsurface interface lines
|
|
if epsr:
|
|
ax.plot([0, np.deg2rad(180 - thetac)], [min, 0], color="0.7", lw=2)
|
|
ax.plot([0, np.deg2rad(180 + thetac)], [min, 0], color="0.7", lw=2)
|
|
ax.plot([np.deg2rad(270), np.deg2rad(90)], [0, 0], color="0.7", lw=2)
|
|
ax.annotate("Air", xy=(np.deg2rad(270), 0), xytext=(8, 8), textcoords="offset points")
|
|
ax.annotate("Ground", xy=(np.deg2rad(270), 0), xytext=(8, -15), textcoords="offset points")
|
|
|
|
# Plot patterns
|
|
for patt in range(0, len(radii)):
|
|
pattplot = np.append(patterns[patt, :], patterns[patt, 0]) # Append start value to close circle
|
|
pattplot = pattplot / np.max(np.max(patterns)) # Normalise, based on set of patterns
|
|
|
|
# Calculate power (ignore warning from taking a log of any zero values)
|
|
with np.errstate(divide="ignore"):
|
|
power = 10 * np.log10(pattplot)
|
|
# Replace any NaNs or Infs from zero division
|
|
power[np.invert(np.isfinite(power))] = 0
|
|
|
|
ax.plot(theta, power, label="{:.2f}m".format(radii[patt]), marker=".", ms=6, lw=1.5)
|
|
|
|
# Add Hertzian dipole plot
|
|
# hertzplot1 = np.append(hertzian[0, :], hertzian[0, 0]) # Append start value to close circle
|
|
# hertzplot1 = hertzplot1 / np.max(np.max(hertzian))
|
|
# ax.plot(theta, 10 * np.log10(hertzplot1), label='Inf. dipole, 0.1m', color='black', ls='-.', lw=3)
|
|
# hertzplot2 = np.append(hertzian[-1, :], hertzian[-1, 0]) # Append start value to close circle
|
|
# hertzplot2 = hertzplot2 / np.max(np.max(hertzian))
|
|
# ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3)
|
|
|
|
# Theta axis options
|
|
ax.set_theta_zero_location("N")
|
|
ax.set_theta_direction("clockwise")
|
|
ax.set_thetagrids(np.arange(0, 360, 30))
|
|
|
|
# Radial axis options
|
|
ax.set_rmax(0)
|
|
ax.set_rlabel_position(45)
|
|
ax.set_yticks(np.arange(min, step, step))
|
|
yticks = ax.get_yticks().tolist()
|
|
yticks[-1] = "0 dB"
|
|
ax.set_yticklabels(yticks)
|
|
|
|
# Grid and legend
|
|
ax.grid(True)
|
|
handles, existlabels = ax.get_legend_handles_labels()
|
|
leg = ax.legend(
|
|
[handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27, -0.12), frameon=False
|
|
) # Plot just first and last legend entries
|
|
# leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False)
|
|
[legobj.set_linewidth(2) for legobj in leg.legendHandles]
|
|
|
|
# Save a pdf of the plot
|
|
savename = os.path.splitext(args.numpyfile)[0] + ".pdf"
|
|
fig.savefig(savename, dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
|
|
# savename = os.path.splitext(args.numpyfile)[0] + '.png'
|
|
# fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
|
|
|
|
plt.show()
|