文件
gprMax/gprMax/materials.py

662 行
24 KiB
Python
原始文件 Blame 文件历史

此文件含有不可见的 Unicode 字符

此文件含有人类无法区分的不可见的 Unicode 字符,但可以由计算机进行不同的处理。 如果您是想特意这样的,可以安全地忽略该警告。 使用 Escape 按钮显示他们。

# Copyright (C) 2015-2023: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import logging
import gprMax.config as config
logger = logging.getLogger(__name__)
class Material:
"""Super-class to describe generic, non-dispersive materials,
their properties and update coefficients.
"""
def __init__(self, numID, ID):
"""
Args:
numID: int for numeric I of the material.
ID: string for name of the material.
"""
self.numID = numID
self.ID = ID
self.type = ""
# Default material averaging
self.averagable = True
# Default material constitutive parameters (free_space)
self.er = 1.0
self.se = 0.0
self.mr = 1.0
self.sm = 0.0
def calculate_update_coeffsH(self, G):
"""Calculates the magnetic update coefficients of the material.
Args:
G: FDTDGrid class describing a grid in a model.
"""
HA = (config.m0 * self.mr / G.dt) + 0.5 * self.sm
HB = (config.m0 * self.mr / G.dt) - 0.5 * self.sm
self.DA = HB / HA
self.DBx = (1 / G.dx) * 1 / HA
self.DBy = (1 / G.dy) * 1 / HA
self.DBz = (1 / G.dz) * 1 / HA
self.srcm = 1 / HA
def calculate_update_coeffsE(self, G):
"""Calculates the electric update coefficients of the material.
Args:
G: FDTDGrid class describing a grid in a model.
"""
EA = (config.sim_config.em_consts["e0"] * self.er / G.dt) + 0.5 * self.se
EB = (config.sim_config.em_consts["e0"] * self.er / G.dt) - 0.5 * self.se
if self.ID == "pec" or self.se == float("inf"):
self.CA = 0
self.CBx = 0
self.CBy = 0
self.CBz = 0
self.srce = 0
else:
self.CA = EB / EA
self.CBx = (1 / G.dx) * 1 / EA
self.CBy = (1 / G.dy) * 1 / EA
self.CBz = (1 / G.dz) * 1 / EA
self.srce = 1 / EA
def calculate_er(self, freq):
"""Calculates the complex relative permittivity of the material at a
specific frequency.
Args:
freq: float for frequency used to calculate complex relative
permittivity.
Returns:
er: float for complex relative permittivity.
"""
return self.er
class DispersiveMaterial(Material):
"""Class to describe materials with frequency dependent properties, e.g.
Debye, Drude, Lorenz.
"""
# Properties of water from: http://dx.doi.org/10.1109/TGRS.2006.873208
waterer = 80.1
watereri = 4.9
waterdeltaer = waterer - watereri
watertau = 9.231e-12
# Properties of grass from: http://dx.doi.org/10.1007/BF00902994
grasser = 18.5087
grasseri = 12.7174
grassdeltaer = grasser - grasseri
grasstau = 1.0793e-11
def __init__(self, numID, ID):
super().__init__(numID, ID)
self.poles = 0
self.deltaer = []
self.tau = []
self.alpha = []
def calculate_update_coeffsE(self, G):
"""Calculates the electric update coefficients of the material.
Args:
G: FDTDGrid class describing a grid in a model.
"""
# The implementation of the dispersive material modelling comes from the
# derivation in: http://dx.doi.org/10.1109/TAP.2014.2308549
self.w = np.zeros(
config.get_model_config().materials["maxpoles"],
dtype=config.get_model_config().materials["dispersivedtype"],
)
self.q = np.zeros(
config.get_model_config().materials["maxpoles"],
dtype=config.get_model_config().materials["dispersivedtype"],
)
self.zt = np.zeros(
config.get_model_config().materials["maxpoles"],
dtype=config.get_model_config().materials["dispersivedtype"],
)
self.zt2 = np.zeros(
config.get_model_config().materials["maxpoles"],
dtype=config.get_model_config().materials["dispersivedtype"],
)
self.eqt = np.zeros(
config.get_model_config().materials["maxpoles"],
dtype=config.get_model_config().materials["dispersivedtype"],
)
self.eqt2 = np.zeros(
config.get_model_config().materials["maxpoles"],
dtype=config.get_model_config().materials["dispersivedtype"],
)
for x in range(self.poles):
if "debye" in self.type:
self.w[x] = self.deltaer[x] / self.tau[x]
self.q[x] = -1 / self.tau[x]
elif "lorentz" in self.type:
# tau for Lorentz materials are pole frequencies
# alpha for Lorentz materials are the damping coefficients
wp2 = (2 * np.pi * self.tau[x]) ** 2
self.w[x] = -1j * ((wp2 * self.deltaer[x]) / np.sqrt(wp2 - self.alpha[x] ** 2))
self.q[x] = -self.alpha[x] + (1j * np.sqrt(wp2 - self.alpha[x] ** 2))
elif "drude" in self.type:
# tau for Drude materials are pole frequencies
# alpha for Drude materials are the inverse of relaxation times
wp2 = (2 * np.pi * self.tau[x]) ** 2
self.se += wp2 / self.alpha[x]
self.w[x] = -(wp2 / self.alpha[x])
self.q[x] = -self.alpha[x]
self.eqt[x] = np.exp(self.q[x] * G.dt)
self.eqt2[x] = np.exp(self.q[x] * (G.dt / 2))
self.zt[x] = (self.w[x] / self.q[x]) * (1 - self.eqt[x]) / G.dt
self.zt2[x] = (self.w[x] / self.q[x]) * (1 - self.eqt2[x])
EA = (
(config.sim_config.em_consts["e0"] * self.er / G.dt)
+ 0.5 * self.se
- (config.sim_config.em_consts["e0"] / G.dt) * np.sum(self.zt2.real)
)
EB = (
(config.sim_config.em_consts["e0"] * self.er / G.dt)
- 0.5 * self.se
- (config.sim_config.em_consts["e0"] / G.dt) * np.sum(self.zt2.real)
)
self.CA = EB / EA
self.CBx = (1 / G.dx) * 1 / EA
self.CBy = (1 / G.dy) * 1 / EA
self.CBz = (1 / G.dz) * 1 / EA
self.srce = 1 / EA
def calculate_er(self, freq):
"""Calculates the complex relative permittivity of the material at a
specific frequency.
Args:
freq: float for frequency used to calculate complex relative
permittivity.
Returns:
er: float for complex relative permittivity.
"""
# Permittivity at infinite frequency if the material is dispersive
er = self.er
w = 2 * np.pi * freq
er += self.se / (1j * w * config.sim_config.em_consts["e0"])
if "debye" in self.type:
for pole in range(self.poles):
er += self.deltaer[pole] / (1 + 1j * w * self.tau[pole])
elif "lorentz" in self.type:
for pole in range(self.poles):
er += (self.deltaer[pole] * self.tau[pole] ** 2) / (
self.tau[pole] ** 2 + 2j * w * self.alpha[pole] - w**2
)
elif "drude" in self.type:
ersum = 0
for pole in range(self.poles):
ersum += self.tau[pole] ** 2 / (w**2 - 1j * w * self.alpha[pole])
er -= ersum
return er
class PeplinskiSoil:
"""Soil objects that are characterised according to a mixing model
by Peplinski (http://dx.doi.org/10.1109/36.387598).
"""
def __init__(self, ID, sandfraction, clayfraction, bulkdensity, sandpartdensity, watervolfraction):
"""
Args:
ID: string for name of the soil.
sandfraction: float of sand fraction of the soil.
clayfraction: float of clay fraction of the soil.
bulkdensity: float of bulk density of the soil (g/cm3).
sandpartdensity: float of density of the sand particles in the
soil (g/cm3).
watervolfraction: tuple of floats of two numbers that specify a
range for the volumetric water fraction of the
soil.
"""
self.ID = ID
self.S = sandfraction
self.C = clayfraction
self.rb = bulkdensity
self.rs = sandpartdensity
self.mu = watervolfraction
# Store all of the material IDs which allows for more general mixing models.
self.matID = []
def calculate_properties(self, nbins, G):
"""Calculates the real and imaginery part of a Debye model for the soil
as well as a conductivity. It uses an approximation to a semi-empirical
model (http://dx.doi.org/10.1109/36.387598).
Args:
nbins: int for number of bins to use to create the different materials.
G: FDTDGrid class describing a grid in a model.
"""
# Debye model properties of water at 25C & zero salinity
T = 25
S = 0
watereri, waterer, watertau, watersig = calculate_water_properties(T, S)
f = 1.3e9
w = 2 * np.pi * f
erealw = watereri + ((waterer - watereri) / (1 + (w * watertau) ** 2))
a = 0.65 # Experimentally derived constant
es = (1.01 + 0.44 * self.rs) ** 2 - 0.062 #  Relative permittivity of sand particles
b1 = 1.2748 - 0.519 * self.S - 0.152 * self.C
b2 = 1.33797 - 0.603 * self.S - 0.166 * self.C
# For frequencies in the range 0.3GHz to 1.3GHz
sigf = 0.0467 + 0.2204 * self.rb - 0.411 * self.S + 0.6614 * self.C
# For frequencies in the range 1.4GHz to 18GHz
# sigf = -1.645 + 1.939 * self.rb - 2.25622 * self.S + 1.594 * self.C
# Generate a set of bins based on the given volumetric water fraction
# values. Changed to make sure mid points are contained completely within the ranges.
# The limiting values of the ranges are not included in this.
mubins = np.linspace(self.mu[0], self.mu[1], nbins + 1)
# Generate a range of volumetric water fraction values the mid-point of
# each bin to make materials from
mumaterials = 0.5 * (mubins[1 : nbins + 1] + mubins[0:nbins])
# Create an iterator
muiter = np.nditer(mumaterials, flags=["c_index"])
while not muiter.finished:
# Real part for frequencies in the range 1.4GHz to 18GHz
er = (1 + (self.rb / self.rs) * ((es**a) - 1) + (muiter[0] ** b1 * erealw**a) - muiter[0]) ** (1 / a)
# Real part for frequencies in the range 0.3GHz to 1.3GHz (linear
# correction to 1.4-18GHz value)
er = 1.15 * er - 0.68
# Permittivity at infinite frequency
eri = er - (muiter[0] ** (b2 / a) * DispersiveMaterial.waterdeltaer)
# Effective conductivity
sig = muiter[0] ** (b2 / a) * ((sigf * (self.rs - self.rb)) / (self.rs * muiter[0]))
# Check to see if the material already exists before creating a new one
requiredID = "|{:.4f}|".format(float(muiter[0]))
material = next((x for x in G.materials if x.ID == requiredID), None)
if muiter.index == 0:
if material:
self.matID.append(material.numID)
if not material:
m = DispersiveMaterial(len(G.materials), requiredID)
m.type = "debye"
m.averagable = False
m.poles = 1
if m.poles > config.get_model_config().materials["maxpoles"]:
config.get_model_config().materials["maxpoles"] = m.poles
m.er = eri
m.se = sig
m.deltaer.append(er - eri)
m.tau.append(DispersiveMaterial.watertau)
G.materials.append(m)
self.matID.append(m.numID)
muiter.iternext()
class RangeMaterial:
"""Material objects defined by a given range of their parameters to be used
for fractal spatial distributions.
"""
def __init__(self, ID, er_range, se_range, mr_range, sm_range):
"""
Args:
ID: string for name of the material range.
er_range: tuple of floats for relative permittivity range of the
materials.
se_range: tuple of floats for electric conductivity range of the
materials.
mr_range: tuple of floats for magnetic permeability of materials.
sm_range: tuple of floats for magnetic loss range of materials.
"""
self.ID = ID
self.er = er_range
self.sig = se_range
self.mu = mr_range
self.ro = sm_range
# Store all of the material IDs which allows for more general mixing models.
self.matID = []
def calculate_properties(self, nbins, G):
"""Calculates the specific properties of each of the materials.
Args:
nbins: int for number of bins to use to create the different materials.
G: FDTDGrid class describing a grid in a model.
"""
# Generate a set of relative permittivity bins based on the given range
erbins = np.linspace(self.er[0], self.er[1], nbins + 1)
# Generate a range of relative permittivity values the mid-point of
# each bin to make materials from
ermaterials = 0.5 * (erbins[1 : nbins + 1] + erbins[0:nbins])
# Generate a set of conductivity bins based on the given range
sigmabins = np.linspace(self.sig[0], self.sig[1], nbins + 1)
# Generate a range of conductivity values the mid-point of
# each bin to make materials from
sigmamaterials = 0.5 * (sigmabins[1 : nbins + 1] + sigmabins[0:nbins])
# Generate a set of magnetic permeability bins based on the given range
mubins = np.linspace(self.mu[0], self.mu[1], nbins + 1)
# Generate a range of magnetic permeability values the mid-point of
# each bin to make materials from
mumaterials = 0.5 * (mubins[1 : nbins + 1] + mubins[0:nbins])
# Generate a set of magnetic loss bins based on the given range
robins = np.linspace(self.ro[0], self.ro[1], nbins + 1)
# Generate a range of magnetic loss values the mid-point of each bin to
# make materials from
romaterials = 0.5 * (robins[1 : nbins + 1] + robins[0:nbins])
# Iterate over the bins
for iter in np.arange(nbins):
# Relative permittivity
er = ermaterials[iter]
# Effective conductivity
se = sigmamaterials[iter]
# Magnetic permeability
mr = mumaterials[iter]
# Magnetic loss
sm = romaterials[iter]
# Check to see if the material already exists before creating a new one
requiredID = f"|{float(er):.4f}+{float(se):.4f}+{float(mr):.4f}+{float(sm):.4f}|"
material = next((x for x in G.materials if x.ID == requiredID), None)
if iter == 0:
if material:
self.matID.append(material.numID)
if not material:
m = Material(len(G.materials), requiredID)
m.type = ""
m.averagable = True
m.er = er
m.se = se
m.mr = mr
m.sm = sm
G.materials.append(m)
self.matID.append(m.numID)
class ListMaterial:
"""A list of predefined materials to be used for fractal spatial distributions.
This class does not create new materials but collects them to be used
in a stochastic distribution by a fractal box.
"""
def __init__(self, ID, listofmaterials):
"""
Args:
ID: string for name of the material list.
listofmaterials: list of material IDs.
"""
self.ID = ID
self.mat = listofmaterials
# Store all of the material IDs which allows for more general mixing models.
self.matID = []
def calculate_properties(self, nbins, G):
"""Calculates the properties of the materials.
Args:
nbins: int for number of bins to use to create the different materials.
G: FDTDGrid class describing a grid in a model.
"""
# Iterate over the bins
for iter in np.arange(nbins):
requiredID = self.mat[iter]
# Check if the material already exists before creating a new one
material = next((x for x in G.materials if x.ID == requiredID), None)
self.matID.append(material.numID)
if not material:
logger.exception(self.__str__() + f" material(s) {material} do not exist")
raise ValueError
def create_built_in_materials(G):
"""Creates pre-defined (built-in) materials.
Args:
G: FDTDGrid class describing a grid in a model.
"""
m = Material(0, "pec")
m.se = float("inf")
m.type = "builtin"
m.averagable = False
G.materials.append(m)
m = Material(1, "free_space")
m.type = "builtin"
G.materials.append(m)
def calculate_water_properties(T=25, S=0):
"""Get extended Debye model properties for water.
Args:
T: float for emperature of water (degrees centigrade).
S: float for salinity of water (part per thousand).
Returns:
eri: float for relative permittivity at infinite frequency.
er: float for static relative permittivity.
tau: float for relaxation time (s).
sig: float for conductivity (Siemens/m).
"""
# Properties of water from: https://doi.org/10.1109/JOE.1977.1145319
eri = 4.9
er = 88.045 - 0.4147 * T + 6.295e-4 * T**2 + 1.075e-5 * T**3
tau = (1 / (2 * np.pi)) * (1.1109e-10 - 3.824e-12 * T + 6.938e-14 * T**2 - 5.096e-16 * T**3)
delta = 25 - T
beta = (
2.033e-2 + 1.266e-4 * delta + 2.464e-6 * delta**2 - S * (1.849e-5 - 2.551e-7 * delta + 2.551e-8 * delta**2)
)
sig_25s = S * (0.182521 - 1.46192e-3 * S + 2.09324e-5 * S**2 - 1.28205e-7 * S**3)
sig = sig_25s * np.exp(-delta * beta)
return eri, er, tau, sig
def create_water(G, T=25, S=0):
"""Creates single-pole Debye model for water with specified temperature and
salinity.
Args:
T: float for temperature of water (degrees centigrade).
S: float for salinity of water (part per thousand).
G: FDTDGrid class describing a grid in a model.
"""
eri, er, tau, sig = calculate_water_properties(T, S)
m = DispersiveMaterial(len(G.materials), "water")
m.averagable = False
m.type = "builtin, debye"
m.poles = 1
m.er = eri
m.se = sig
m.deltaer.append(er - eri)
m.tau.append(tau)
G.materials.append(m)
if config.get_model_config().materials["maxpoles"] == 0:
config.get_model_config().materials["maxpoles"] = 1
def create_grass(G):
"""Creates single-pole Debye model for grass
Args:
G: FDTDGrid class describing a grid in a model.
"""
# Properties of grass from: http://dx.doi.org/10.1007/BF00902994
er = 18.5087
eri = 12.7174
tau = 1.0793e-11
sig = 0
m = DispersiveMaterial(len(G.materials), "grass")
m.averagable = False
m.type = "builtin, debye"
m.poles = 1
m.er = eri
m.se = sig
m.deltaer.append(er - eri)
m.tau.append(tau)
G.materials.append(m)
if config.get_model_config().materials["maxpoles"] == 0:
config.get_model_config().materials["maxpoles"] = 1
def process_materials(G):
"""Processes complete list of materials - calculates update coefficients,
stores in arrays, and builds text list of materials/properties
Args:
G: FDTDGrid class describing a grid in a model.
Returns:
materialsdata: list of material IDs, names, and properties to
print a table.
"""
if config.get_model_config().materials["maxpoles"] == 0:
materialsdata = [
[
"\nID",
"\nName",
"\nType",
"\neps_r",
"sigma\n[S/m]",
"\nmu_r",
"sigma*\n[Ohm/m]",
"Dielectric\nsmoothable",
]
]
else:
materialsdata = [
[
"\nID",
"\nName",
"\nType",
"\neps_r",
"sigma\n[S/m]",
"Delta\neps_r",
"tau\n[s]",
"omega\n[Hz]",
"delta\n[Hz]",
"gamma\n[Hz]",
"\nmu_r",
"sigma*\n[Ohm/m]",
"Dielectric\nsmoothable",
]
]
for material in G.materials:
# Calculate update coefficients for specific material
material.calculate_update_coeffsE(G)
material.calculate_update_coeffsH(G)
# Add update coefficients to overall storage for all materials
G.updatecoeffsE[material.numID, :] = material.CA, material.CBx, material.CBy, material.CBz, material.srce
G.updatecoeffsH[material.numID, :] = material.DA, material.DBx, material.DBy, material.DBz, material.srcm
# Add update coefficients to overall storage for dispersive materials
if hasattr(material, "poles"):
z = 0
for pole in range(config.get_model_config().materials["maxpoles"]):
G.updatecoeffsdispersive[material.numID, z : z + 3] = (
config.sim_config.em_consts["e0"] * material.eqt2[pole],
material.eqt[pole],
material.zt[pole],
)
z += 3
# Construct information on material properties for printing table
materialtext = [
str(material.numID),
material.ID[:50] if len(material.ID) > 50 else material.ID,
material.type,
f"{material.er:g}",
f"{material.se:g}",
]
if config.get_model_config().materials["maxpoles"] > 0:
if "debye" in material.type:
materialtext.append("\n".join("{:g}".format(deltaer) for deltaer in material.deltaer))
materialtext.append("\n".join("{:g}".format(tau) for tau in material.tau))
materialtext.extend(["", "", ""])
elif "lorentz" in material.type:
materialtext.append(", ".join("{:g}".format(deltaer) for deltaer in material.deltaer))
materialtext.append("")
materialtext.append(", ".join("{:g}".format(tau) for tau in material.tau))
materialtext.append(", ".join("{:g}".format(alpha) for alpha in material.alpha))
materialtext.append("")
elif "drude" in material.type:
materialtext.extend(["", ""])
materialtext.append(", ".join("{:g}".format(tau) for tau in material.tau))
materialtext.append("")
materialtext.append(", ".join("{:g}".format(alpha) for alpha in material.alpha))
else:
materialtext.extend(["", "", "", "", ""])
materialtext.extend((f"{material.mr:g}", f"{material.sm:g}", material.averagable))
materialsdata.append(materialtext)
return materialsdata