你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
912 行
33 KiB
Cython
912 行
33 KiB
Cython
# Copyright (C) 2015-2023: The University of Edinburgh, United Kingdom
|
|
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import numpy as np
|
|
cimport numpy as np
|
|
from cython.parallel import prange
|
|
|
|
from gprMax.config cimport float_or_double
|
|
|
|
|
|
cpdef void order1_xminus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hy and Hz field components for the xminus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHy, materialHz
|
|
cdef float_or_double dx, dEy, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
dx = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = xf - (i + 1)
|
|
IRA = 1 / RA[0, i]
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, i]
|
|
RE0 = RE[0, i]
|
|
RF0 = RF[0, i]
|
|
RC0 = IRA * RB0 * RF0
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEz = (Ez[ii + 1, jj, kk] - Ez[ii, jj, kk]) / dx
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] + updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEz - IRA * Phi1[0, i, j, k]))
|
|
Phi1[0, i, j, k] = (RE0 * Phi1[0, i, j, k] + RC0 * dEz -
|
|
RC0 * Phi1[0, i, j, k])
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEy = (Ey[ii + 1, jj, kk] - Ey[ii, jj, kk]) / dx
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] - updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEy - IRA * Phi2[0, i, j, k]))
|
|
Phi2[0, i, j, k] = (RE0 * Phi2[0, i, j, k] + RC0 * dEy -
|
|
RC0 * Phi2[0, i, j, k])
|
|
|
|
cpdef void order2_xminus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hy and Hz field components for the xminus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHy, materialHz
|
|
cdef float_or_double dx, dEy, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
cdef float_or_double RB1, RC1, RE1, RF1, Psi1, Psi2
|
|
dx = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = xf - (i + 1)
|
|
IRA = 1 / (RA[0, i] + RA[1, i])
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, i]
|
|
RE0 = RE[0, i]
|
|
RF0 = RF[0, i]
|
|
RC0 = IRA * RF0
|
|
RB1 = RB[1, i]
|
|
RE1 = RE[1, i]
|
|
RF1 = RF[1, i]
|
|
RC1 = IRA * RF1
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
Psi1 = RB0 * Phi1[0, i, j, k] + RB1 * Phi1[1, i, j, k]
|
|
Psi2 = RB0 * Phi2[0, i, j, k] + RB1 * Phi2[1, i, j, k]
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEz = (Ez[ii + 1, jj, kk] - Ez[ii, jj, kk]) / dx
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] + updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEz - IRA * Psi1))
|
|
Phi1[1, i, j, k] = RE1 * Phi1[1, i, j, k] + RC1 * (dEz - Psi1)
|
|
Phi1[0, i, j, k] = RE0 * Phi1[0, i, j, k] + RC0 * (dEz - Psi1)
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEy = (Ey[ii + 1, jj, kk] - Ey[ii, jj, kk]) / dx
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] - updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEy - IRA * Psi2))
|
|
Phi2[1, i, j, k] = RE1 * Phi2[1, i, j, k] + RC1 * (dEy - Psi2)
|
|
Phi2[0, i, j, k] = RE0 * Phi2[0, i, j, k] + RC0 * (dEy - Psi2)
|
|
|
|
|
|
cpdef void order1_xplus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hy and Hz field components for the xplus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHy, materialHz
|
|
cdef float_or_double dx, dEy, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
dx = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
IRA = 1 / RA[0, i]
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, i]
|
|
RE0 = RE[0, i]
|
|
RF0 = RF[0, i]
|
|
RC0 = IRA * RB0 * RF0
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEz = (Ez[ii + 1, jj, kk] - Ez[ii, jj, kk]) / dx
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] + updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEz - IRA * Phi1[0, i, j, k]))
|
|
Phi1[0, i, j, k] = (RE0 * Phi1[0, i, j, k] + RC0 * dEz -
|
|
RC0 * Phi1[0, i, j, k])
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEy = (Ey[ii + 1, jj, kk] - Ey[ii, jj, kk]) / dx
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] - updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEy - IRA * Phi2[0, i, j, k]))
|
|
Phi2[0, i, j, k] = (RE0 * Phi2[0, i, j, k] + RC0 * dEy -
|
|
RC0 * Phi2[0, i, j, k])
|
|
|
|
cpdef void order2_xplus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hy and Hz field components for the xplus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHy, materialHz
|
|
cdef float_or_double dx, dEy, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
cdef float_or_double RB1, RC1, RE1, RF1, Psi1, Psi2
|
|
dx = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
IRA = 1 / (RA[0, i] + RA[1, i])
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, i]
|
|
RE0 = RE[0, i]
|
|
RF0 = RF[0, i]
|
|
RC0 = IRA * RF0
|
|
RB1 = RB[1, i]
|
|
RE1 = RE[1, i]
|
|
RF1 = RF[1, i]
|
|
RC1 = IRA * RF1
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
Psi1 = RB0 * Phi1[0, i, j, k] + RB1 * Phi1[1, i, j, k]
|
|
Psi2 = RB0 * Phi2[0, i, j, k] + RB1 * Phi2[1, i, j, k]
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEz = (Ez[ii + 1, jj, kk] - Ez[ii, jj, kk]) / dx
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] + updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEz - IRA * Psi1))
|
|
Phi1[1, i, j, k] = RE1 * Phi1[1, i, j, k] + RC1 * (dEz - Psi1)
|
|
Phi1[0, i, j, k] = RE0 * Phi1[0, i, j, k] + RC0 * (dEz - Psi1)
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEy = (Ey[ii + 1, jj, kk] - Ey[ii, jj, kk]) / dx
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] - updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEy - IRA * Psi2))
|
|
Phi2[1, i, j, k] = RE1 * Phi2[1, i, j, k] + RC1 * (dEy - Psi2)
|
|
Phi2[0, i, j, k] = RE0 * Phi2[0, i, j, k] + RC0 * (dEy - Psi2)
|
|
|
|
|
|
cpdef void order1_yminus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hz field components for the yminus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHz
|
|
cdef float_or_double dy, dEx, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
dy = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = yf - (j + 1)
|
|
IRA = 1 / RA[0, j]
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, j]
|
|
RE0 = RE[0, j]
|
|
RF0 = RF[0, j]
|
|
RC0 = IRA * RB0 * RF0
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEz = (Ez[ii, jj + 1, kk] - Ez[ii, jj, kk]) / dy
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] - updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEz - IRA * Phi1[0, i, j, k]))
|
|
Phi1[0, i, j, k] = (RE0 * Phi1[0, i, j, k] + RC0 * dEz -
|
|
RC0 * Phi1[0, i, j, k])
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEx = (Ex[ii, jj + 1, kk] - Ex[ii, jj, kk]) / dy
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] + updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEx - IRA * Phi2[0, i, j, k]))
|
|
Phi2[0, i, j, k] = (RE0 * Phi2[0, i, j, k] + RC0 * dEx -
|
|
RC0 * Phi2[0, i, j, k])
|
|
|
|
cpdef void order2_yminus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hz field components for the yminus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHz
|
|
cdef float_or_double dy, dEx, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
cdef float_or_double RB1, RC1, RE1, RF1, Psi1, Psi2
|
|
dy = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = yf - (j + 1)
|
|
IRA = 1 / (RA[0, j] + RA[1, j])
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, j]
|
|
RE0 = RE[0, j]
|
|
RF0 = RF[0, j]
|
|
RC0 = IRA * RF0
|
|
RB1 = RB[1, j]
|
|
RE1 = RE[1, j]
|
|
RF1 = RF[1, j]
|
|
RC1 = IRA * RF1
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
Psi1 = RB0 * Phi1[0, i, j, k] + RB1 * Phi1[1, i, j, k]
|
|
Psi2 = RB0 * Phi2[0, i, j, k] + RB1 * Phi2[1, i, j, k]
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEz = (Ez[ii, jj + 1, kk] - Ez[ii, jj, kk]) / dy
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] - updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEz - IRA * Psi1))
|
|
Phi1[1, i, j, k] = RE1 * Phi1[1, i, j, k] + RC1 * (dEz - Psi1)
|
|
Phi1[0, i, j, k] = RE0 * Phi1[0, i, j, k] + RC0 * (dEz - Psi1)
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEx = (Ex[ii, jj + 1, kk] - Ex[ii, jj, kk]) / dy
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] + updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEx - IRA * Psi2))
|
|
Phi2[1, i, j, k] = RE1 * Phi2[1, i, j, k] + RC1 * (dEx - Psi2)
|
|
Phi2[0, i, j, k] = RE0 * Phi2[0, i, j, k] + RC0 * (dEx - Psi2)
|
|
|
|
|
|
cpdef void order1_yplus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hz field components for the yplus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHz
|
|
cdef float_or_double dy, dEx, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
dy = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
IRA = 1 / RA[0, j]
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, j]
|
|
RE0 = RE[0, j]
|
|
RF0 = RF[0, j]
|
|
RC0 = IRA * RB0 * RF0
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEz = (Ez[ii, jj + 1, kk] - Ez[ii, jj, kk]) / dy
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] - updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEz - IRA * Phi1[0, i, j, k]))
|
|
Phi1[0, i, j, k] = (RE0 * Phi1[0, i, j, k] + RC0 * dEz -
|
|
RC0 * Phi1[0, i, j, k])
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEx = (Ex[ii, jj + 1, kk] - Ex[ii, jj, kk]) / dy
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] + updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEx - IRA * Phi2[0, i, j, k]))
|
|
Phi2[0, i, j, k] = (RE0 * Phi2[0, i, j, k] + RC0 * dEx -
|
|
RC0 * Phi2[0, i, j, k])
|
|
|
|
cpdef void order2_yplus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hz field components for the yplus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHz
|
|
cdef float_or_double dy, dEx, dEz, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
cdef float_or_double RB1, RC1, RE1, RF1, Psi1, Psi2
|
|
dy = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
IRA = 1 / (RA[0, j] + RA[1, j])
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, j]
|
|
RE0 = RE[0, j]
|
|
RF0 = RF[0, j]
|
|
RC0 = IRA * RF0
|
|
RB1 = RB[1, j]
|
|
RE1 = RE[1, j]
|
|
RF1 = RF[1, j]
|
|
RC1 = IRA * RF1
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
Psi1 = RB0 * Phi1[0, i, j, k] + RB1 * Phi1[1, i, j, k]
|
|
Psi2 = RB0 * Phi2[0, i, j, k] + RB1 * Phi2[1, i, j, k]
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEz = (Ez[ii, jj + 1, kk] - Ez[ii, jj, kk]) / dy
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] - updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEz - IRA * Psi1))
|
|
Phi1[1, i, j, k] = RE1 * Phi1[1, i, j, k] + RC1 * (dEz - Psi1)
|
|
Phi1[0, i, j, k] = RE0 * Phi1[0, i, j, k] + RC0 * (dEz - Psi1)
|
|
# Hz
|
|
materialHz = ID[5, ii, jj, kk]
|
|
dEx = (Ex[ii, jj + 1, kk] - Ex[ii, jj, kk]) / dy
|
|
Hz[ii, jj, kk] = (Hz[ii, jj, kk] + updatecoeffsH[materialHz, 4] *
|
|
(IRA1 * dEx - IRA * Psi2))
|
|
Phi2[1, i, j, k] = RE1 * Phi2[1, i, j, k] + RC1 * (dEx - Psi2)
|
|
Phi2[0, i, j, k] = RE0 * Phi2[0, i, j, k] + RC0 * (dEx - Psi2)
|
|
|
|
|
|
cpdef void order1_zminus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hy field components for the zminus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHy
|
|
cdef float_or_double dz, dEx, dEy, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
dz = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = zf - (k + 1)
|
|
IRA = 1 / RA[0, k]
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, k]
|
|
RE0 = RE[0, k]
|
|
RF0 = RF[0, k]
|
|
RC0 = IRA * RB0 * RF0
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEy = (Ey[ii, jj, kk + 1] - Ey[ii, jj, kk]) / dz
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] + updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEy - IRA * Phi1[0, i, j, k]))
|
|
Phi1[0, i, j, k] = (RE0 * Phi1[0, i, j, k] + RC0 * dEy -
|
|
RC0 * Phi1[0, i, j, k])
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEx = (Ex[ii, jj, kk + 1] - Ex[ii, jj, kk]) / dz
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] - updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEx - IRA * Phi2[0, i, j, k]))
|
|
Phi2[0, i, j, k] = (RE0 * Phi2[0, i, j, k] + RC0 * dEx -
|
|
RC0 * Phi2[0, i, j, k])
|
|
|
|
cpdef void order2_zminus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hy field components for the zminus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHy
|
|
cdef float_or_double dz, dEx, dEy, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
cdef float_or_double RB1, RC1, RE1, RF1, Psi1, Psi2
|
|
dz = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = zf - (k + 1)
|
|
IRA = 1 / (RA[0, k] + RA[1, k])
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, k]
|
|
RE0 = RE[0, k]
|
|
RF0 = RF[0, k]
|
|
RC0 = IRA * RF0
|
|
RB1 = RB[1, k]
|
|
RE1 = RE[1, k]
|
|
RF1 = RF[1, k]
|
|
RC1 = IRA * RF1
|
|
Psi1 = RB0 * Phi1[0, i, j, k] + RB1 * Phi1[1, i, j, k]
|
|
Psi2 = RB0 * Phi2[0, i, j, k] + RB1 * Phi2[1, i, j, k]
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEy = (Ey[ii, jj, kk + 1] - Ey[ii, jj, kk]) / dz
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] + updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEy - IRA * Psi1))
|
|
Phi1[1, i, j, k] = RE1 * Phi1[1, i, j, k] + RC1 * (dEy - Psi1)
|
|
Phi1[0, i, j, k] = RE0 * Phi1[0, i, j, k] + RC0 * (dEy - Psi1)
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEx = (Ex[ii, jj, kk + 1] - Ex[ii, jj, kk]) / dz
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] - updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEx - IRA * Psi2))
|
|
Phi2[1, i, j, k] = RE1 * Phi2[1, i, j, k] + RC1 * (dEx - Psi2)
|
|
Phi2[0, i, j, k] = RE0 * Phi2[0, i, j, k] + RC0 * (dEx - Psi2)
|
|
|
|
|
|
cpdef void order1_zplus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hy field components for the zplus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHy
|
|
cdef float_or_double dz, dEx, dEy, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
dz = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
IRA = 1 / RA[0, k]
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, k]
|
|
RE0 = RE[0, k]
|
|
RF0 = RF[0, k]
|
|
RC0 = IRA * RB0 * RF0
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEy = (Ey[ii, jj, kk + 1] - Ey[ii, jj, kk]) / dz
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] + updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEy - IRA * Phi1[0, i, j, k]))
|
|
Phi1[0, i, j, k] = (RE0 * Phi1[0, i, j, k] + RC0 * dEy -
|
|
RC0 * Phi1[0, i, j, k])
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEx = (Ex[ii, jj, kk + 1] - Ex[ii, jj, kk]) / dz
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] - updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEx - IRA * Phi2[0, i, j, k]))
|
|
Phi2[0, i, j, k] = (RE0 * Phi2[0, i, j, k] + RC0 * dEx -
|
|
RC0 * Phi2[0, i, j, k])
|
|
|
|
cpdef void order2_zplus(
|
|
int xs,
|
|
int xf,
|
|
int ys,
|
|
int yf,
|
|
int zs,
|
|
int zf,
|
|
int nthreads,
|
|
float_or_double[:, ::1] updatecoeffsH,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
float_or_double[:, :, ::1] Ex,
|
|
float_or_double[:, :, ::1] Ey,
|
|
float_or_double[:, :, ::1] Ez,
|
|
float_or_double[:, :, ::1] Hx,
|
|
float_or_double[:, :, ::1] Hy,
|
|
float_or_double[:, :, ::1] Hz,
|
|
float_or_double[:, :, :, ::1] Phi1,
|
|
float_or_double[:, :, :, ::1] Phi2,
|
|
float_or_double[:, ::1] RA,
|
|
float_or_double[:, ::1] RB,
|
|
float_or_double[:, ::1] RE,
|
|
float_or_double[:, ::1] RF,
|
|
float d
|
|
):
|
|
"""Updates the Hx and Hy field components for the zplus slab.
|
|
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf: ints for cell coordinates of PML slab.
|
|
nthreads: int for number of threads to use.
|
|
updatecoeffs, ID, E, H: memoryviews to access update coefficients,
|
|
ID and field component arrays.
|
|
Phi, RA, RB, RE, RF: memoryviews to access PML coefficient arrays.
|
|
d: float for spatial discretisation, e.g. dx, dy or dz.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, ii, jj, kk
|
|
cdef int nx, ny, nz, materialHx, materialHy
|
|
cdef float_or_double dz, dEx, dEy, IRA, IRA1, RB0, RC0, RE0, RF0
|
|
cdef float_or_double RB1, RC1, RE1, RF1, Psi1, Psi2
|
|
dz = d
|
|
nx = xf - xs
|
|
ny = yf - ys
|
|
nz = zf - zs
|
|
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
ii = i + xs
|
|
for j in range(0, ny):
|
|
jj = j + ys
|
|
for k in range(0, nz):
|
|
kk = k + zs
|
|
IRA = 1 / (RA[0, k] + RA[1, k])
|
|
IRA1 = IRA - 1
|
|
RB0 = RB[0, k]
|
|
RE0 = RE[0, k]
|
|
RF0 = RF[0, k]
|
|
RC0 = IRA * RF0
|
|
RB1 = RB[1, k]
|
|
RE1 = RE[1, k]
|
|
RF1 = RF[1, k]
|
|
RC1 = IRA * RF1
|
|
Psi1 = RB0 * Phi1[0, i, j, k] + RB1 * Phi1[1, i, j, k]
|
|
Psi2 = RB0 * Phi2[0, i, j, k] + RB1 * Phi2[1, i, j, k]
|
|
# Hx
|
|
materialHx = ID[3, ii, jj, kk]
|
|
dEy = (Ey[ii, jj, kk + 1] - Ey[ii, jj, kk]) / dz
|
|
Hx[ii, jj, kk] = (Hx[ii, jj, kk] + updatecoeffsH[materialHx, 4] *
|
|
(IRA1 * dEy - IRA * Psi1))
|
|
Phi1[1, i, j, k] = RE1 * Phi1[1, i, j, k] + RC1 * (dEy - Psi1)
|
|
Phi1[0, i, j, k] = RE0 * Phi1[0, i, j, k] + RC0 * (dEy - Psi1)
|
|
# Hy
|
|
materialHy = ID[4, ii, jj, kk]
|
|
dEx = (Ex[ii, jj, kk + 1] - Ex[ii, jj, kk]) / dz
|
|
Hy[ii, jj, kk] = (Hy[ii, jj, kk] - updatecoeffsH[materialHy, 4] *
|
|
(IRA1 * dEx - IRA * Psi2))
|
|
Phi2[1, i, j, k] = RE1 * Phi2[1, i, j, k] + RC1 * (dEx - Psi2)
|
|
Phi2[0, i, j, k] = RE0 * Phi2[0, i, j, k] + RC0 * (dEx - Psi2)
|