你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
394 行
18 KiB
Django/Jinja
394 行
18 KiB
Django/Jinja
# Copyright (C) 2015-2023: The University of Edinburgh, United Kingdom
|
|
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import numpy as np
|
|
cimport numpy as np
|
|
|
|
from cython.parallel import prange
|
|
|
|
|
|
# Use C-functions from 'complex.h' but doesn't work for Windows as it doesn't
|
|
# support 'double complex' but instead defines its own type '_Dcomplex'.
|
|
# https://docs.microsoft.com/en-us/cpp/c-runtime-library/complex-math-support?view=vs-2019
|
|
# https://stackoverflow.com/questions/57837255/defining-dcomplex-externally-in-cython?rq=1
|
|
{% if not functions[0].iswin %}
|
|
cdef extern from "complex.h" nogil:
|
|
double creal(double complex z)
|
|
float crealf(float complex z)
|
|
{% endif %}
|
|
|
|
|
|
###############################################################
|
|
# Electric field updates - dispersive materials - multipole A #
|
|
###############################################################
|
|
|
|
{% for item in functions %}
|
|
cpdef void {{ item.name_a }}(
|
|
int nx,
|
|
int ny,
|
|
int nz,
|
|
int nthreads,
|
|
int maxpoles,
|
|
{{ item.field_type }}[:, ::1] updatecoeffsE,
|
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
|
{{ item.field_type }}[:, :, ::1] Ex,
|
|
{{ item.field_type }}[:, :, ::1] Ey,
|
|
{{ item.field_type }}[:, :, ::1] Ez,
|
|
{{ item.field_type }}[:, :, ::1] Hx,
|
|
{{ item.field_type }}[:, :, ::1] Hy,
|
|
{{ item.field_type }}[:, :, ::1] Hz
|
|
):
|
|
"""Updates the electric field components when dispersive materials
|
|
(with multiple poles) are present.
|
|
|
|
Args:
|
|
nx, ny, nz: int for grid size in cells.
|
|
nthreads: int for number of threads to use.
|
|
maxpoles: int for maximum number of poles.
|
|
updatecoeffs, T, ID, E, H: memoryviews to access to update coeffients,
|
|
temporary, ID and field component arrays.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, pole
|
|
cdef int material
|
|
cdef float phi = 0
|
|
|
|
# Ex component
|
|
if ny != 1 or nz != 1:
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(1, nz):
|
|
material = ID[0, i, j, k]
|
|
phi = 0
|
|
for pole in range(maxpoles):
|
|
{% if 'complex' in item.dispersive_type %}
|
|
{% if item.iswin %}
|
|
phi = (phi + updatecoeffsdispersive[material, pole * 3].real
|
|
* Tx[pole, i, j, k].real)
|
|
{% else %}
|
|
phi = (phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3])
|
|
* {{ item.real_part }}(Tx[pole, i, j, k]))
|
|
{% endif %}
|
|
{% else %}
|
|
phi = phi + updatecoeffsdispersive[material, pole * 3] * Tx[pole, i, j, k]
|
|
{% endif %}
|
|
Tx[pole, i, j, k] = (updatecoeffsdispersive[material, 1 + (pole * 3)]
|
|
* Tx[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)]
|
|
* Ex[i, j, k])
|
|
Ex[i, j, k] = (updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2]
|
|
* (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3]
|
|
* (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi)
|
|
|
|
# Ey component
|
|
if nx != 1 or nz != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(0, ny):
|
|
for k in range(1, nz):
|
|
material = ID[1, i, j, k]
|
|
phi = 0
|
|
for pole in range(maxpoles):
|
|
{% if 'complex' in item.dispersive_type %}
|
|
{% if item.iswin %}
|
|
phi = (phi + updatecoeffsdispersive[material, pole * 3].real
|
|
* Ty[pole, i, j, k].real)
|
|
{% else %}
|
|
phi = (phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3])
|
|
* {{ item.real_part }}(Ty[pole, i, j, k]))
|
|
{% endif %}
|
|
{% else %}
|
|
phi = phi + updatecoeffsdispersive[material, pole * 3] * Ty[pole, i, j, k]
|
|
{% endif %}
|
|
Ty[pole, i, j, k] = (updatecoeffsdispersive[material, 1 + (pole * 3)]
|
|
* Ty[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)]
|
|
* Ey[i, j, k])
|
|
Ey[i, j, k] = (updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3]
|
|
* (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1]
|
|
* (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi)
|
|
|
|
# Ez component
|
|
if nx != 1 or ny != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(0, nz):
|
|
material = ID[2, i, j, k]
|
|
phi = 0
|
|
for pole in range(maxpoles):
|
|
{% if 'complex' in item.dispersive_type %}
|
|
{% if item.iswin %}
|
|
phi = (phi + updatecoeffsdispersive[material, pole * 3].real
|
|
* Tz[pole, i, j, k].real)
|
|
{% else %}
|
|
phi = (phi + {{ item.real_part }}(updatecoeffsdispersive[material, pole * 3])
|
|
* {{ item.real_part }}(Tz[pole, i, j, k]))
|
|
{% endif %}
|
|
{% else %}
|
|
phi = phi + updatecoeffsdispersive[material, pole * 3] * Tz[pole, i, j, k]
|
|
{% endif %}
|
|
Tz[pole, i, j, k] = (updatecoeffsdispersive[material, 1 + (pole * 3)]
|
|
* Tz[pole, i, j, k] + updatecoeffsdispersive[material, 2 + (pole * 3)]
|
|
* Ez[i, j, k])
|
|
Ez[i, j, k] = (updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1]
|
|
* (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2]
|
|
* (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi)
|
|
{% endfor %}
|
|
|
|
|
|
###############################################################
|
|
# Electric field updates - dispersive materials - multipole B #
|
|
###############################################################
|
|
|
|
{% for item in functions %}
|
|
cpdef void {{ item.name_b }}(
|
|
int nx,
|
|
int ny,
|
|
int nz,
|
|
int nthreads,
|
|
int maxpoles,
|
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
|
{{ item.field_type }}[:, :, ::1] Ex,
|
|
{{ item.field_type }}[:, :, ::1] Ey,
|
|
{{ item.field_type }}[:, :, ::1] Ez
|
|
):
|
|
"""Updates a temporary dispersive material array when disperisive materials
|
|
(with multiple poles) are present.
|
|
|
|
Args:
|
|
nx, ny, nz: int for grid size in cells.
|
|
nthreads: int for number of threads to use.
|
|
maxpoles: int for maximum number of poles.
|
|
updatecoeffs, T, ID, E, H: memoryviews to access to update coeffients,
|
|
temporary, ID and field component arrays.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k, pole
|
|
cdef int material
|
|
|
|
# Ex component
|
|
if ny != 1 or nz != 1:
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(1, nz):
|
|
material = ID[0, i, j, k]
|
|
for pole in range(maxpoles):
|
|
Tx[pole, i, j, k] = (Tx[pole, i, j, k]
|
|
- updatecoeffsdispersive[material, 2 + (pole * 3)]
|
|
* Ex[i, j, k])
|
|
|
|
# Ey component
|
|
if nx != 1 or nz != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(0, ny):
|
|
for k in range(1, nz):
|
|
material = ID[1, i, j, k]
|
|
for pole in range(maxpoles):
|
|
Ty[pole, i, j, k] = (Ty[pole, i, j, k]
|
|
- updatecoeffsdispersive[material, 2 + (pole * 3)]
|
|
* Ey[i, j, k])
|
|
|
|
# Ez component
|
|
if nx != 1 or ny != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(0, nz):
|
|
material = ID[2, i, j, k]
|
|
for pole in range(maxpoles):
|
|
Tz[pole, i, j, k] = (Tz[pole, i, j, k]
|
|
- updatecoeffsdispersive[material, 2 + (pole * 3)]
|
|
* Ez[i, j, k])
|
|
|
|
{% endfor %}
|
|
|
|
|
|
#################################################################
|
|
# Electric field updates - dispersive materials - single pole A #
|
|
#################################################################
|
|
|
|
{% for item in functions %}
|
|
cpdef void {{ item.name_a_1 }}(
|
|
int nx,
|
|
int ny,
|
|
int nz,
|
|
int nthreads,
|
|
int maxpoles,
|
|
{{ item.field_type }}[:, ::1] updatecoeffsE,
|
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
|
{{ item.field_type }}[:, :, ::1] Ex,
|
|
{{ item.field_type }}[:, :, ::1] Ey,
|
|
{{ item.field_type }}[:, :, ::1] Ez,
|
|
{{ item.field_type }}[:, :, ::1] Hx,
|
|
{{ item.field_type }}[:, :, ::1] Hy,
|
|
{{ item.field_type }}[:, :, ::1] Hz
|
|
):
|
|
"""Updates the electric field components when dispersive materials
|
|
(with 1 pole) are present.
|
|
|
|
Args:
|
|
nx, ny, nz: int for grid size in cells.
|
|
nthreads: int for number of threads to use.
|
|
maxpoles: int for maximum number of poles.
|
|
updatecoeffs, T, ID, E, H: memoryviews to access to update coeffients,
|
|
temporary, ID and field component arrays.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k
|
|
cdef int material
|
|
cdef float phi = 0
|
|
|
|
# Ex component
|
|
if ny != 1 or nz != 1:
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(1, nz):
|
|
material = ID[0, i, j, k]
|
|
{% if 'complex' in item.dispersive_type %}
|
|
{% if item.iswin %}
|
|
phi = (updatecoeffsdispersive[material, 0].real
|
|
* Tx[0, i, j, k].real)
|
|
{% else %}
|
|
phi = ({{ item.real_part }}(updatecoeffsdispersive[material, 0])
|
|
* {{ item.real_part }}(Tx[0, i, j, k]))
|
|
{% endif %}
|
|
{% else %}
|
|
phi = updatecoeffsdispersive[material, 0] * Tx[0, i, j, k]
|
|
{% endif %}
|
|
Tx[0, i, j, k] = (updatecoeffsdispersive[material, 1] * Tx[0, i, j, k]
|
|
+ updatecoeffsdispersive[material, 2] * Ex[i, j, k])
|
|
Ex[i, j, k] = (updatecoeffsE[material, 0] * Ex[i, j, k] + updatecoeffsE[material, 2]
|
|
* (Hz[i, j, k] - Hz[i, j - 1, k]) - updatecoeffsE[material, 3]
|
|
* (Hy[i, j, k] - Hy[i, j, k - 1]) - updatecoeffsE[material, 4] * phi)
|
|
|
|
# Ey component
|
|
if nx != 1 or nz != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(0, ny):
|
|
for k in range(1, nz):
|
|
material = ID[1, i, j, k]
|
|
{% if 'complex' in item.dispersive_type %}
|
|
{% if item.iswin %}
|
|
phi = (updatecoeffsdispersive[material, 0].real
|
|
* Ty[0, i, j, k].real)
|
|
{% else %}
|
|
phi = ({{ item.real_part }}(updatecoeffsdispersive[material, 0])
|
|
* {{ item.real_part }}(Ty[0, i, j, k]))
|
|
{% endif %}
|
|
{% else %}
|
|
phi = updatecoeffsdispersive[material, 0] * Ty[0, i, j, k]
|
|
{% endif %}
|
|
Ty[0, i, j, k] = (updatecoeffsdispersive[material, 1] * Ty[0, i, j, k]
|
|
+ updatecoeffsdispersive[material, 2] * Ey[i, j, k])
|
|
Ey[i, j, k] = (updatecoeffsE[material, 0] * Ey[i, j, k] + updatecoeffsE[material, 3]
|
|
* (Hx[i, j, k] - Hx[i, j, k - 1]) - updatecoeffsE[material, 1]
|
|
* (Hz[i, j, k] - Hz[i - 1, j, k]) - updatecoeffsE[material, 4] * phi)
|
|
|
|
# Ez component
|
|
if nx != 1 or ny != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(0, nz):
|
|
material = ID[2, i, j, k]
|
|
{% if 'complex' in item.dispersive_type %}
|
|
{% if item.iswin %}
|
|
phi = (updatecoeffsdispersive[material, 0].real
|
|
* Tz[0, i, j, k].real)
|
|
{% else %}
|
|
phi = ({{ item.real_part }}(updatecoeffsdispersive[material, 0])
|
|
* {{ item.real_part }}(Tz[0, i, j, k]))
|
|
{% endif %}
|
|
{% else %}
|
|
phi = updatecoeffsdispersive[material, 0] * Tz[0, i, j, k]
|
|
{% endif %}
|
|
Tz[0, i, j, k] = (updatecoeffsdispersive[material, 1] * Tz[0, i, j, k]
|
|
+ updatecoeffsdispersive[material, 2] * Ez[i, j, k])
|
|
Ez[i, j, k] = (updatecoeffsE[material, 0] * Ez[i, j, k] + updatecoeffsE[material, 1]
|
|
* (Hy[i, j, k] - Hy[i - 1, j, k]) - updatecoeffsE[material, 2]
|
|
* (Hx[i, j, k] - Hx[i, j - 1, k]) - updatecoeffsE[material, 4] * phi)
|
|
|
|
{% endfor %}
|
|
|
|
|
|
#################################################################
|
|
# Electric field updates - dispersive materials - single pole B #
|
|
#################################################################
|
|
|
|
{% for item in functions %}
|
|
cpdef void {{ item.name_b_1 }}(
|
|
int nx,
|
|
int ny,
|
|
int nz,
|
|
int nthreads,
|
|
int maxpoles,
|
|
{{ item.dispersive_type }}[:, ::1] updatecoeffsdispersive,
|
|
np.uint32_t[:, :, :, ::1] ID,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tx,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Ty,
|
|
{{ item.dispersive_type }}[:, :, :, ::1] Tz,
|
|
{{ item.field_type }}[:, :, ::1] Ex,
|
|
{{ item.field_type }}[:, :, ::1] Ey,
|
|
{{ item.field_type }}[:, :, ::1] Ez
|
|
):
|
|
"""Updates a temporary dispersive material array when disperisive materials
|
|
(with 1 pole) are present.
|
|
|
|
Args:
|
|
nx, ny, nz: int for grid size in cells.
|
|
nthreads: int for number of threads to use.
|
|
maxpoles: int for maximum number of poles.
|
|
updatecoeffs, T, ID, E, H: memoryviews to access to update coeffients,
|
|
temporary, ID and field component arrays.
|
|
"""
|
|
|
|
cdef Py_ssize_t i, j, k
|
|
cdef int material
|
|
|
|
# Ex component
|
|
if ny != 1 or nz != 1:
|
|
for i in prange(0, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(1, nz):
|
|
material = ID[0, i, j, k]
|
|
Tx[0, i, j, k] = Tx[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ex[i, j, k]
|
|
|
|
# Ey component
|
|
if nx != 1 or nz != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(0, ny):
|
|
for k in range(1, nz):
|
|
material = ID[1, i, j, k]
|
|
Ty[0, i, j, k] = Ty[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ey[i, j, k]
|
|
|
|
# Ez component
|
|
if nx != 1 or ny != 1:
|
|
for i in prange(1, nx, nogil=True, schedule='static', num_threads=nthreads):
|
|
for j in range(1, ny):
|
|
for k in range(0, nz):
|
|
material = ID[2, i, j, k]
|
|
Tz[0, i, j, k] = Tz[0, i, j, k] - updatecoeffsdispersive[material, 2] * Ez[i, j, k]
|
|
{% endfor %}
|