你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 12:36:51 +08:00
99 行
2.8 KiB
Python
99 行
2.8 KiB
Python
"""Cylinder in freespace
|
|
|
|
This example model demonstrates how to use subgrids at a basic level.
|
|
|
|
The geometry is 3D (required for any use of subgrids) and is of a water-filled
|
|
cylindrical object in freespace. The subgrid encloses the cylinderical object
|
|
using a fine spatial discretisation (1mm), and a courser spatial discretisation
|
|
(5mm) is used in the rest of the model (main grid). A simple Hertzian dipole
|
|
source is used with a waveform shaped as the first derivative of a gaussian.
|
|
"""
|
|
|
|
from pathlib import Path
|
|
import gprMax
|
|
from gprMax.materials import calculate_water_properties
|
|
|
|
# File path - used later to specify name of output files
|
|
fn = Path(__file__)
|
|
parts = fn.parts
|
|
|
|
# Subgrid spatial discretisation in x, y, z directions
|
|
dl_sg = 1e-3
|
|
|
|
# Subgrid ratio - must always be an odd integer multiple
|
|
ratio = 5
|
|
dl = dl_sg * ratio
|
|
|
|
# Domain extent
|
|
x = 0.500
|
|
y = 0.500
|
|
z = 0.500
|
|
|
|
# Time window
|
|
tw = 6e-9
|
|
|
|
scene = gprMax.Scene()
|
|
|
|
title = gprMax.Title(name=fn.name)
|
|
dxdydz = gprMax.Discretisation(p1=(dl, dl, dl))
|
|
domain = gprMax.Domain(p1=(x, y, z))
|
|
time_window = gprMax.TimeWindow(time=tw)
|
|
|
|
wf = gprMax.Waveform(wave_type="gaussiandot", amp=1, freq=1.5e9, id="mypulse")
|
|
hd = gprMax.HertzianDipole(polarisation="z", p1=(0.205, 0.400, 0.250), waveform_id="mypulse")
|
|
rx = gprMax.Rx(p1=(0.245, 0.400, 0.250))
|
|
|
|
scene.add(title)
|
|
scene.add(dxdydz)
|
|
scene.add(domain)
|
|
scene.add(time_window)
|
|
scene.add(wf)
|
|
scene.add(hd)
|
|
scene.add(rx)
|
|
|
|
# Cylinder parameters
|
|
c1 = (0.225, 0.250, 0.100)
|
|
c2 = (0.225, 0.250, 0.400)
|
|
r = 0.010
|
|
sg1 = (c1[0] - r, c1[1] - r, c1[2])
|
|
sg2 = (c2[0] + r, c2[1] + r, c2[2])
|
|
|
|
# Create subgrid
|
|
subgrid = gprMax.SubGridHSG(p1=sg1, p2=sg2, ratio=ratio, id="sg")
|
|
scene.add(subgrid)
|
|
|
|
# Create water material
|
|
eri, er, tau, sig = calculate_water_properties()
|
|
water = gprMax.Material(er=eri, se=sig, mr=1, sm=0, id="water")
|
|
subgrid.add(water)
|
|
water = gprMax.AddDebyeDispersion(poles=1, er_delta=[er - eri], tau=[tau], material_ids=["water"])
|
|
subgrid.add(water)
|
|
|
|
# Add cylinder to subgrid
|
|
cylinder = gprMax.Cylinder(p1=c1, p2=c2, r=r, material_id="water")
|
|
subgrid.add(cylinder)
|
|
|
|
# Create some geometry views for both subgrid and main grid
|
|
gvsg = gprMax.GeometryView(
|
|
p1=sg1, p2=sg2, dl=(dl_sg, dl_sg, dl_sg), filename=fn.with_suffix("").parts[-1] + "_sg", output_type="n"
|
|
)
|
|
subgrid.add(gvsg)
|
|
|
|
gv1 = gprMax.GeometryView(
|
|
p1=(0, 0, 0), p2=(x, y, z), dl=(dl, dl, dl), filename=fn.with_suffix("").parts[-1], output_type="n"
|
|
)
|
|
scene.add(gv1)
|
|
|
|
# Create some snapshots of entire domain
|
|
for i in range(5):
|
|
s = gprMax.Snapshot(
|
|
p1=(0, 0, 0),
|
|
p2=(x, y, z),
|
|
dl=(dl, dl, dl),
|
|
time=(i + 0.5) * 1e-9,
|
|
filename=fn.with_suffix("").parts[-1] + "_" + str(i + 1),
|
|
)
|
|
scene.add(s)
|
|
|
|
gprMax.run(scenes=[scene], n=1, geometry_only=False, outputfile=fn, subgrid=True, autotranslate=True)
|