文件
gprMax/gprMax/cython/yee_cell_build.pyx
2023-03-08 17:16:56 -07:00

401 行
14 KiB
Cython

# Copyright (C) 2015-2023: The University of Edinburgh, United Kingdom
# Authors: Craig Warren, Antonis Giannopoulos, and John Hartley
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
cimport numpy as np
from gprMax.cython.yee_cell_setget_rigid cimport get_rigid_Ex
from gprMax.cython.yee_cell_setget_rigid cimport get_rigid_Ey
from gprMax.cython.yee_cell_setget_rigid cimport get_rigid_Ez
from gprMax.cython.yee_cell_setget_rigid cimport get_rigid_Hx
from gprMax.cython.yee_cell_setget_rigid cimport get_rigid_Hy
from gprMax.cython.yee_cell_setget_rigid cimport get_rigid_Hz
from gprMax.materials import Material
cpdef void create_electric_average(
int i,
int j,
int k,
int numID1,
int numID2,
int numID3,
int numID4,
int componentID,
G
):
"""Creates a new material by averaging the dielectric properties of the
surrounding cells.
Args:
i, j, k: ints for cell coordinates.
numID: ints for numeric IDs for materials in surrounding cells.
componentID: int for numeric ID for electric field component.
G: FDTDGrid class describing a grid in a model.
"""
# Make an ID composed of the names of the four materials that will be averaged
requiredID = (G.materials[numID1].ID + '+' + G.materials[numID2].ID + '+' +
G.materials[numID3].ID + '+' + G.materials[numID4].ID)
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1]) and
x.ID.count(tmp[2]) == requiredID.count(tmp[2]) and
x.ID.count(tmp[3]) == requiredID.count(tmp[3])]
if material:
G.ID[componentID, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID)
m.type = 'dielectric-smoothed'
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er,
G.materials[numID3].er, G.materials[numID4].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se,
G.materials[numID3].se, G.materials[numID4].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr,
G.materials[numID3].mr, G.materials[numID4].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm,
G.materials[numID3].sm, G.materials[numID4].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
G.ID[componentID, i, j, k] = newNumID
cpdef void create_magnetic_average(
int i,
int j,
int k,
int numID1,
int numID2,
int componentID,
G
):
"""Creates a new material by averaging the dielectric properties of the
surrounding cells.
Args:
i, j, k: ints for cell coordinates.
numID: ints for numeric IDs for materials in surrounding cells.
componentID: int for numeric ID for magnetic field component.
G: FDTDGrid class describing a grid in a model.
"""
# Make an ID composed of the names of the two materials that will be averaged
requiredID = G.materials[numID1].ID + '+' + G.materials[numID2].ID
# Check if this material already exists
tmp = requiredID.split('+')
material = [x for x in G.materials if
(x.ID.count(tmp[0]) == requiredID.count(tmp[0]) and
x.ID.count(tmp[1]) == requiredID.count(tmp[1])) or
(x.ID.count(tmp[0]) % 2 == 0 and x.ID.count(tmp[1]) % 2 == 0)]
if material:
G.ID[componentID, i, j, k] = material[0].numID
else:
# Create new material
newNumID = len(G.materials)
m = Material(newNumID, requiredID)
m.type = 'dielectric-smoothed'
# Create averaged constituents for material
m.er = np.mean((G.materials[numID1].er, G.materials[numID2].er), axis=0)
m.se = np.mean((G.materials[numID1].se, G.materials[numID2].se), axis=0)
m.mr = np.mean((G.materials[numID1].mr, G.materials[numID2].mr), axis=0)
m.sm = np.mean((G.materials[numID1].sm, G.materials[numID2].sm), axis=0)
# Append the new material object to the materials list
G.materials.append(m)
G.ID[componentID, i, j, k] = newNumID
cpdef void build_electric_components(
np.uint32_t[:, :, ::1] solid,
np.int8_t[:, :, :, ::1] rigidE,
np.uint32_t[:, :, :, ::1] ID,
G
):
"""Builds the electric field components in the ID array.
Args:
solid, rigid, ID: memoryviews to access solid, rigid and ID arrays.
G: FDTDGrid class describing a grid in a model.
"""
cdef Py_ssize_t i, j, k
cdef int numID1, numID2, numID3, numID4, IDEx, IDEy, IDEz
IDEx = G.IDlookup['Ex']
IDEy = G.IDlookup['Ey']
IDEz = G.IDlookup['Ez']
# Loops common for all electric components
for i in range(1, G.nx):
for j in range(1, G.ny):
for k in range(1, G.nz):
# Ex component
# If rigid is True do not average
if get_rigid_Ex(i, j, k, rigidE):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i, j - 1, k]
numID3 = solid[i, j - 1, k - 1]
numID4 = solid[i, j, k - 1]
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[IDEx, i, j, k] = numID1
else:
# Averaging is required
create_electric_average(i, j, k, numID1, numID2,
numID3, numID4, IDEx, G)
# Ey component
# If rigid is True do not average
if get_rigid_Ey(i, j, k, rigidE):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i - 1, j, k]
numID3 = solid[i - 1, j, k - 1]
numID4 = solid[i, j, k - 1]
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[IDEy, i, j, k] = numID1
else:
# Averaging is required
create_electric_average(i, j, k, numID1, numID2,
numID3, numID4, IDEy, G)
# Ez component
# If rigid is True do not average
if get_rigid_Ez(i, j, k, rigidE):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i - 1, j, k]
numID3 = solid[i - 1, j - 1, k]
numID4 = solid[i, j - 1, k]
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[IDEz, i, j, k] = numID1
else:
# Averaging is required
create_electric_average(i, j, k, numID1, numID2,
numID3, numID4, IDEz, G)
# Extra loops for Ex component
i = 0
for j in range(1, G.ny):
for k in range(1, G.nz):
# If rigid is True do not average
if get_rigid_Ex(i, j, k, rigidE):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i, j - 1, k]
numID3 = solid[i, j - 1, k - 1]
numID4 = solid[i, j, k - 1]
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[IDEx, i, j, k] = numID1
else:
# Averaging is required
create_electric_average(i, j, k, numID1, numID2,
numID3, numID4, IDEx, G)
# Extra loops for Ey component
for i in range(1, G.nx):
j = 0
for k in range(1, G.nz):
# If rigid is True do not average
if get_rigid_Ey(i, j, k, rigidE):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i - 1, j, k]
numID3 = solid[i - 1, j, k - 1]
numID4 = solid[i, j, k - 1]
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[IDEy, i, j, k] = numID1
else:
# Averaging is required
create_electric_average(i, j, k, numID1, numID2,
numID3, numID4, IDEy, G)
# Extra loops for Ez component
for i in range(1, G.nx):
for j in range(1, G.ny):
k = 0
# If rigid is True do not average
if get_rigid_Ez(i, j, k, rigidE):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i - 1, j, k]
numID3 = solid[i - 1, j - 1, k]
numID4 = solid[i, j - 1, k]
# If all values are the same no need to average
if numID1 == numID2 and numID1 == numID3 and numID1 == numID4:
ID[IDEz, i, j, k] = numID1
else:
# Averaging is required
create_electric_average(i, j, k, numID1, numID2,
numID3, numID4, IDEz, G)
cpdef void build_magnetic_components(
np.uint32_t[:, :, ::1] solid,
np.int8_t[:, :, :, ::1] rigidH,
np.uint32_t[:, :, :, ::1] ID,
G
):
"""Builds the magnetic field components in the ID array.
Args:
solid, rigid, ID: memoryviews to access solid, rigid and ID arrays.
G: FDTDGrid class describing a grid in a model.
"""
cdef Py_ssize_t i, j, k
cdef int numID1, numID2, IDHx, IDHy, IDHz
IDHx = G.IDlookup['Hx']
IDHy = G.IDlookup['Hy']
IDHz = G.IDlookup['Hz']
# Loops common for all electric components
for i in range(1, G.nx):
for j in range(1, G.ny):
for k in range(1, G.nz):
# Hx component
# If rigid is True do not average
if get_rigid_Hx(i, j, k, rigidH):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i - 1, j, k]
# If all values are the same no need to average
if numID1 == numID2:
ID[IDHx, i, j, k] = numID1
else:
# Averaging is required
create_magnetic_average(i, j, k, numID1, numID2, IDHx, G)
# Hy component
# If rigid is True do not average
if get_rigid_Hy(i, j, k, rigidH):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i, j - 1, k]
# If all values are the same no need to average
if numID1 == numID2:
ID[IDHy, i, j, k] = numID1
else:
# Averaging is required
create_magnetic_average(i, j, k, numID1, numID2, IDHy, G)
# Hz component
# If rigid is True do not average
if get_rigid_Hz(i, j, k, rigidH):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i, j, k - 1]
# If all values are the same no need to average
if numID1 == numID2:
ID[IDHz, i, j, k] = numID1
else:
# Averaging is required
create_magnetic_average(i, j, k, numID1, numID2, IDHz, G)
# Extra loops for Hx component
for i in range(1, G.nx):
j = 0
k = 0
# If rigid is True do not average
if get_rigid_Hx(i, j, k, rigidH):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i - 1, j, k]
# If all values are the same no need to average
if numID1 == numID2:
ID[IDHx, i, j, k] = numID1
else:
# Averaging is required
create_magnetic_average(i, j, k, numID1, numID2, IDHx, G)
# Extra loops for Hy component
i = 0
k = 0
for j in range(1, G.ny):
# If rigid is True do not average
if get_rigid_Hy(i, j, k, rigidH):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i, j - 1, k]
# If all values are the same no need to average
if numID1 == numID2:
ID[IDHy, i, j, k] = numID1
else:
# Averaging is required
create_magnetic_average(i, j, k, numID1, numID2, IDHy, G)
# Extra loops for Hz component
i = 0
j = 0
for k in range(1, G.nz):
# If rigid is True do not average
if get_rigid_Hz(i, j, k, rigidH):
pass
else:
numID1 = solid[i, j, k]
numID2 = solid[i, j, k - 1]
# If all values are the same no need to average
if numID1 == numID2:
ID[IDHz, i, j, k] = numID1
else:
# Averaging is required
create_magnetic_average(i, j, k, numID1, numID2, IDHz, G)