文件
gprMax/toolboxes/AntennaPatterns/plot_fields.py
2024-03-18 10:47:19 +00:00

155 行
5.7 KiB
Python

# Copyright (C) 2016, Craig Warren
#
# This module is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
# To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.
#
# Please use the attribution at http://dx.doi.org/10.1016/j.sigpro.2016.04.010
import argparse
import logging
import os
import matplotlib.pyplot as plt
import numpy as np
from scipy.constants import c
from scipy.constants import epsilon_0 as e0
from scipy.constants import mu_0 as m0
logger = logging.getLogger(__name__)
# Impedance of free space (Ohms)
z0 = np.sqrt(m0 / e0)
# Parse command line arguments
parser = argparse.ArgumentParser(
description="Plot field patterns from a simulation with receivers positioned in circles around an antenna. This module should be used after the field pattern data has been processed and stored using the initial_save.py module.",
usage="cd gprMax; python -m user_libs.AntennaPatterns.plot_fields numpyfile",
)
parser.add_argument("numpyfile", help="name of numpy file including path")
# parser.add_argument('hertzian', help='name of numpy file including path')
args = parser.parse_args()
patterns = np.load(args.numpyfile)
# hertzian = np.load(args.hertzian)
########################################
# User configurable parameters
# Pattern type (E or H)
type = "H"
# Relative permittivity of half-space for homogeneous materials (set to None for inhomogeneous)
epsr = 5
# Observation radii and angles
radii = np.linspace(0.1, 0.3, 20)
theta = np.linspace(3, 357, 60)
theta = np.deg2rad(np.append(theta, theta[0])) # Append start value to close circle
# Centre frequency of modelled antenna
f = 1.5e9 # GSSI 1.5GHz antenna model
# Largest dimension of antenna transmitting element
D = 0.060 # GSSI 1.5GHz antenna model
# Minimum value for plotting energy and ring steps (dB)
min = -72
step = 12
########################################
# Critical angle and velocity
if epsr:
mr = 1
z1 = np.sqrt(mr / epsr) * z0
v1 = c / np.sqrt(epsr)
thetac = np.round(np.rad2deg(np.arcsin(v1 / c)))
wavelength = v1 / f
# Print some useful information
logger.info(f"Centre frequency: {f / 1000000000.0} GHz")
if epsr:
logger.info(f"Critical angle for Er {epsr} is {thetac} degrees")
logger.info(f"Wavelength: {wavelength:.3f} m")
logger.info(
"Observation distance(s) from {:.3f} m ({:.1f} wavelengths) to {:.3f} m ({:.1f} wavelengths)".format(
radii[0], radii[0] / wavelength, radii[-1], radii[-1] / wavelength
)
)
logger.info(
"Theoretical boundary between reactive & radiating near-field (0.62*sqrt((D^3/wavelength): {:.3f} m".format(
0.62 * np.sqrt((D**3) / wavelength)
)
)
logger.info(
"Theoretical boundary between radiating near-field & far-field (2*D^2/wavelength): {:.3f} m".format(
(2 * D**2) / wavelength
)
)
# Setup figure
fig = plt.figure(num=args.numpyfile, figsize=(8, 8), facecolor="w", edgecolor="w")
ax = plt.subplot(111, polar=True)
cmap = plt.cm.get_cmap("rainbow")
ax.set_prop_cycle("color", [cmap(i) for i in np.linspace(0, 1, len(radii))])
# Critical angle window and air/subsurface interface lines
if epsr:
ax.plot([0, np.deg2rad(180 - thetac)], [min, 0], color="0.7", lw=2)
ax.plot([0, np.deg2rad(180 + thetac)], [min, 0], color="0.7", lw=2)
ax.plot([np.deg2rad(270), np.deg2rad(90)], [0, 0], color="0.7", lw=2)
ax.annotate("Air", xy=(np.deg2rad(270), 0), xytext=(8, 8), textcoords="offset points")
ax.annotate("Ground", xy=(np.deg2rad(270), 0), xytext=(8, -15), textcoords="offset points")
# Plot patterns
for patt in range(0, len(radii)):
pattplot = np.append(patterns[patt, :], patterns[patt, 0]) # Append start value to close circle
pattplot = pattplot / np.max(np.max(patterns)) # Normalise, based on set of patterns
# Calculate power (ignore warning from taking a log of any zero values)
with np.errstate(divide="ignore"):
power = 10 * np.log10(pattplot)
# Replace any NaNs or Infs from zero division
power[np.invert(np.isfinite(power))] = 0
ax.plot(theta, power, label=f"{radii[patt]:.2f}m", marker=".", ms=6, lw=1.5)
# Add Hertzian dipole plot
# hertzplot1 = np.append(hertzian[0, :], hertzian[0, 0]) # Append start value to close circle
# hertzplot1 = hertzplot1 / np.max(np.max(hertzian))
# ax.plot(theta, 10 * np.log10(hertzplot1), label='Inf. dipole, 0.1m', color='black', ls='-.', lw=3)
# hertzplot2 = np.append(hertzian[-1, :], hertzian[-1, 0]) # Append start value to close circle
# hertzplot2 = hertzplot2 / np.max(np.max(hertzian))
# ax.plot(theta, 10 * np.log10(hertzplot2), label='Inf. dipole, 0.58m', color='black', ls='--', lw=3)
# Theta axis options
ax.set_theta_zero_location("N")
ax.set_theta_direction("clockwise")
ax.set_thetagrids(np.arange(0, 360, 30))
# Radial axis options
ax.set_rmax(0)
ax.set_rlabel_position(45)
ax.set_yticks(np.arange(min, step, step))
yticks = ax.get_yticks().tolist()
yticks[-1] = "0 dB"
ax.set_yticklabels(yticks)
# Grid and legend
ax.grid(True)
handles, existlabels = ax.get_legend_handles_labels()
leg = ax.legend(
[handles[0], handles[-1]], [existlabels[0], existlabels[-1]], ncol=2, loc=(0.27, -0.12), frameon=False
) # Plot just first and last legend entries
# leg = ax.legend([handles[0], handles[-3], handles[-2], handles[-1]], [existlabels[0], existlabels[-3], existlabels[-2], existlabels[-1]], ncol=4, loc=(-0.13,-0.12), frameon=False)
[legobj.set_linewidth(2) for legobj in leg.legendHandles]
# Save a pdf of the plot
savename = f"{os.path.splitext(args.numpyfile)[0]}.pdf"
fig.savefig(savename, dpi=None, format="pdf", bbox_inches="tight", pad_inches=0.1)
# savename = os.path.splitext(args.numpyfile)[0] + '.png'
# fig.savefig(savename, dpi=150, format='png', bbox_inches='tight', pad_inches=0.1)
plt.show()