你已经派生过 gprMax
镜像自地址
https://gitee.com/sunhf/gprMax.git
已同步 2025-08-06 04:26:52 +08:00
229 行
10 KiB
Python
229 行
10 KiB
Python
# Copyright (C) 2015-2023: The University of Edinburgh
|
|
# Authors: Craig Warren and Antonis Giannopoulos
|
|
#
|
|
# This file is part of gprMax.
|
|
#
|
|
# gprMax is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# gprMax is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
import os
|
|
import sys
|
|
from struct import pack
|
|
|
|
import numpy as np
|
|
|
|
from gprMax.constants import floattype
|
|
from gprMax.snapshots_ext import calculate_snapshot_fields
|
|
from gprMax.utilities import round_value
|
|
|
|
|
|
class Snapshot(object):
|
|
"""Snapshots of the electric and magnetic field values."""
|
|
|
|
# Dimensions of largest requested snapshot
|
|
nx_max = 0
|
|
ny_max = 0
|
|
nz_max = 0
|
|
|
|
# GPU - threads per block
|
|
tpb = (1, 1, 1)
|
|
# GPU - blocks per grid - set according to largest requested snapshot
|
|
bpg = None
|
|
|
|
# Set string for byte order
|
|
if sys.byteorder == 'little':
|
|
byteorder = 'LittleEndian'
|
|
else:
|
|
byteorder = 'BigEndian'
|
|
|
|
# Set format text and string depending on float type
|
|
if np.dtype(floattype).name == 'float32':
|
|
floatname = 'Float32'
|
|
floatstring = 'f'
|
|
elif np.dtype(floattype).name == 'float64':
|
|
floatname = 'Float64'
|
|
floatstring = 'd'
|
|
|
|
def __init__(self, xs=None, ys=None, zs=None, xf=None, yf=None, zf=None, dx=None, dy=None, dz=None, time=None, filename=None):
|
|
"""
|
|
Args:
|
|
xs, xf, ys, yf, zs, zf (int): Extent of the volume in cells.
|
|
dx, dy, dz (int): Spatial discretisation in cells.
|
|
time (int): Iteration number to take the snapshot on.
|
|
filename (str): Filename to save to.
|
|
"""
|
|
|
|
self.xs = xs
|
|
self.ys = ys
|
|
self.zs = zs
|
|
self.xf = xf
|
|
self.yf = yf
|
|
self.zf = zf
|
|
self.dx = dx
|
|
self.dy = dy
|
|
self.dz = dz
|
|
self.nx = round_value((self.xf - self.xs) / self.dx)
|
|
self.ny = round_value((self.yf - self.ys) / self.dy)
|
|
self.nz = round_value((self.zf - self.zs) / self.dz)
|
|
self.sx = slice(self.xs, self.xf + self.dx, self.dx)
|
|
self.sy = slice(self.ys, self.yf + self.dy, self.dy)
|
|
self.sz = slice(self.zs, self.zf + self.dz, self.dz)
|
|
self.ncells = self.nx * self.ny * self.nz
|
|
self.datasizefield = 3 * np.dtype(floattype).itemsize * self.ncells
|
|
self.vtkdatawritesize = 2 * self.datasizefield + 2 * np.dtype(np.uint32).itemsize
|
|
self.time = time
|
|
self.basefilename = filename
|
|
|
|
def store(self, G):
|
|
"""Store (in memory) electric and magnetic field values for snapshot.
|
|
|
|
Args:
|
|
G (class): Grid class instance - holds essential parameters describing the model.
|
|
"""
|
|
|
|
# Memory views of field arrays to dimensions required for the snapshot
|
|
Exslice = np.ascontiguousarray(G.Ex[self.sx, self.sy, self.sz])
|
|
Eyslice = np.ascontiguousarray(G.Ey[self.sx, self.sy, self.sz])
|
|
Ezslice = np.ascontiguousarray(G.Ez[self.sx, self.sy, self.sz])
|
|
Hxslice = np.ascontiguousarray(G.Hx[self.sx, self.sy, self.sz])
|
|
Hyslice = np.ascontiguousarray(G.Hy[self.sx, self.sy, self.sz])
|
|
Hzslice = np.ascontiguousarray(G.Hz[self.sx, self.sy, self.sz])
|
|
|
|
# Create arrays to hold the field data for snapshot
|
|
Exsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
|
|
Eysnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
|
|
Ezsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
|
|
Hxsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
|
|
Hysnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
|
|
Hzsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
|
|
|
|
# Calculate field values at points (comes from averaging field components in cells)
|
|
calculate_snapshot_fields(
|
|
self.nx,
|
|
self.ny,
|
|
self.nz,
|
|
Exslice,
|
|
Eyslice,
|
|
Ezslice,
|
|
Hxslice,
|
|
Hyslice,
|
|
Hzslice,
|
|
Exsnap,
|
|
Eysnap,
|
|
Ezsnap,
|
|
Hxsnap,
|
|
Hysnap,
|
|
Hzsnap)
|
|
|
|
# Convert to format for Paraview
|
|
self.electric = np.stack((Exsnap, Eysnap, Ezsnap)).reshape(-1, order='F')
|
|
self.magnetic = np.stack((Hxsnap, Hysnap, Hzsnap)).reshape(-1, order='F')
|
|
|
|
def write_vtk_imagedata(self, pbar, G):
|
|
"""Write snapshot data to a VTK ImageData (.vti) file.
|
|
|
|
N.B. No Python 3 support for VTK at time of writing (03/2015)
|
|
|
|
Args:
|
|
pbar (class): Progress bar class instance.
|
|
G (class): Grid class instance - holds essential parameters describing the model.
|
|
"""
|
|
|
|
hfield_offset = 3 * np.dtype(floattype).itemsize * self.ncells + np.dtype(np.uint32).itemsize
|
|
|
|
self.filehandle = open(self.filename, 'wb')
|
|
self.filehandle.write('<?xml version="1.0"?>\n'.encode('utf-8'))
|
|
self.filehandle.write('<VTKFile type="ImageData" version="1.0" byte_order="{}">\n'.format(Snapshot.byteorder).encode('utf-8'))
|
|
self.filehandle.write('<ImageData WholeExtent="{} {} {} {} {} {}" Origin="0 0 0" Spacing="{:.3} {:.3} {:.3}">\n'.format(self.xs, round_value(self.xf / self.dx), self.ys, round_value(self.yf / self.dy), self.zs, round_value(self.zf / self.dz), self.dx * G.dx, self.dy * G.dy, self.dz * G.dz).encode('utf-8'))
|
|
self.filehandle.write('<Piece Extent="{} {} {} {} {} {}">\n'.format(self.xs, round_value(self.xf / self.dx), self.ys, round_value(self.yf / self.dy), self.zs, round_value(self.zf / self.dz)).encode('utf-8'))
|
|
self.filehandle.write('<CellData Vectors="E-field H-field">\n'.encode('utf-8'))
|
|
self.filehandle.write('<DataArray type="{}" Name="E-field" NumberOfComponents="3" format="appended" offset="0" />\n'.format(Snapshot.floatname).encode('utf-8'))
|
|
self.filehandle.write('<DataArray type="{}" Name="H-field" NumberOfComponents="3" format="appended" offset="{}" />\n'.format(Snapshot.floatname, hfield_offset).encode('utf-8'))
|
|
self.filehandle.write('</CellData>\n</Piece>\n</ImageData>\n<AppendedData encoding="raw">\n_'.encode('utf-8'))
|
|
|
|
# Write number of bytes of appended data as UInt32
|
|
self.filehandle.write(pack('I', self.datasizefield))
|
|
pbar.update(n=4)
|
|
self.electric.tofile(self.filehandle)
|
|
pbar.update(n=self.datasizefield)
|
|
|
|
# Write number of bytes of appended data as UInt32
|
|
self.filehandle.write(pack('I', self.datasizefield))
|
|
pbar.update(n=4)
|
|
self.magnetic.tofile(self.filehandle)
|
|
pbar.update(n=self.datasizefield)
|
|
|
|
self.filehandle.write('\n</AppendedData>\n</VTKFile>'.encode('utf-8'))
|
|
self.filehandle.close()
|
|
|
|
|
|
def gpu_initialise_snapshot_array(G):
|
|
"""Initialise array on GPU for to store field data for snapshots.
|
|
|
|
Args:
|
|
G (class): Grid class instance - holds essential parameters describing the model.
|
|
|
|
Returns:
|
|
snapE_gpu, snapH_gpu (float): numpy arrays of snapshot data on GPU.
|
|
"""
|
|
|
|
import pycuda.gpuarray as gpuarray
|
|
|
|
# Get dimensions of largest requested snapshot
|
|
for snap in G.snapshots:
|
|
if snap.nx > Snapshot.nx_max:
|
|
Snapshot.nx_max = snap.nx
|
|
if snap.ny > Snapshot.ny_max:
|
|
Snapshot.ny_max = snap.ny
|
|
if snap.nz > Snapshot.nz_max:
|
|
Snapshot.nz_max = snap.nz
|
|
|
|
# GPU - blocks per grid - according to largest requested snapshot
|
|
Snapshot.bpg = (int(np.ceil(((Snapshot.nx_max) * (Snapshot.ny_max) * (Snapshot.nz_max)) / Snapshot.tpb[0])), 1, 1)
|
|
|
|
# 4D arrays to store snapshots on GPU, e.g. snapEx(time, x, y, z)
|
|
numsnaps = 1 if G.snapsgpu2cpu else len(G.snapshots)
|
|
snapEx = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
|
|
snapEy = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
|
|
snapEz = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
|
|
snapHx = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
|
|
snapHy = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
|
|
snapHz = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
|
|
|
|
# Copy arrays to GPU
|
|
snapEx_gpu = gpuarray.to_gpu(snapEx)
|
|
snapEy_gpu = gpuarray.to_gpu(snapEy)
|
|
snapEz_gpu = gpuarray.to_gpu(snapEz)
|
|
snapHx_gpu = gpuarray.to_gpu(snapHx)
|
|
snapHy_gpu = gpuarray.to_gpu(snapHy)
|
|
snapHz_gpu = gpuarray.to_gpu(snapHz)
|
|
|
|
return snapEx_gpu, snapEy_gpu, snapEz_gpu, snapHx_gpu, snapHy_gpu, snapHz_gpu
|
|
|
|
|
|
def gpu_get_snapshot_array(snapEx_gpu, snapEy_gpu, snapEz_gpu, snapHx_gpu, snapHy_gpu, snapHz_gpu, i, snap):
|
|
"""Copy snapshot array used on GPU back to snapshot objects and store in format for Paraview.
|
|
|
|
Args:
|
|
snapE_gpu, snapH_gpu (float): numpy arrays of snapshot data from GPU.
|
|
i (int): index for snapshot data on GPU array.
|
|
snap (class): Snapshot class instance
|
|
"""
|
|
|
|
snap.electric = np.stack((snapEx_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
|
|
snapEy_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
|
|
snapEz_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf])).reshape(-1, order='F')
|
|
snap.magnetic = np.stack((snapHx_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
|
|
snapHy_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
|
|
snapHz_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf])).reshape(-1, order='F')
|