文件
gprMax/gprMax/snapshots.py
2023-03-24 11:50:02 +00:00

229 行
10 KiB
Python

# Copyright (C) 2015-2023: The University of Edinburgh
# Authors: Craig Warren and Antonis Giannopoulos
#
# This file is part of gprMax.
#
# gprMax is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# gprMax is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with gprMax. If not, see <http://www.gnu.org/licenses/>.
import os
import sys
from struct import pack
import numpy as np
from gprMax.constants import floattype
from gprMax.snapshots_ext import calculate_snapshot_fields
from gprMax.utilities import round_value
class Snapshot(object):
"""Snapshots of the electric and magnetic field values."""
# Dimensions of largest requested snapshot
nx_max = 0
ny_max = 0
nz_max = 0
# GPU - threads per block
tpb = (1, 1, 1)
# GPU - blocks per grid - set according to largest requested snapshot
bpg = None
# Set string for byte order
if sys.byteorder == 'little':
byteorder = 'LittleEndian'
else:
byteorder = 'BigEndian'
# Set format text and string depending on float type
if np.dtype(floattype).name == 'float32':
floatname = 'Float32'
floatstring = 'f'
elif np.dtype(floattype).name == 'float64':
floatname = 'Float64'
floatstring = 'd'
def __init__(self, xs=None, ys=None, zs=None, xf=None, yf=None, zf=None, dx=None, dy=None, dz=None, time=None, filename=None):
"""
Args:
xs, xf, ys, yf, zs, zf (int): Extent of the volume in cells.
dx, dy, dz (int): Spatial discretisation in cells.
time (int): Iteration number to take the snapshot on.
filename (str): Filename to save to.
"""
self.xs = xs
self.ys = ys
self.zs = zs
self.xf = xf
self.yf = yf
self.zf = zf
self.dx = dx
self.dy = dy
self.dz = dz
self.nx = round_value((self.xf - self.xs) / self.dx)
self.ny = round_value((self.yf - self.ys) / self.dy)
self.nz = round_value((self.zf - self.zs) / self.dz)
self.sx = slice(self.xs, self.xf + self.dx, self.dx)
self.sy = slice(self.ys, self.yf + self.dy, self.dy)
self.sz = slice(self.zs, self.zf + self.dz, self.dz)
self.ncells = self.nx * self.ny * self.nz
self.datasizefield = 3 * np.dtype(floattype).itemsize * self.ncells
self.vtkdatawritesize = 2 * self.datasizefield + 2 * np.dtype(np.uint32).itemsize
self.time = time
self.basefilename = filename
def store(self, G):
"""Store (in memory) electric and magnetic field values for snapshot.
Args:
G (class): Grid class instance - holds essential parameters describing the model.
"""
# Memory views of field arrays to dimensions required for the snapshot
Exslice = np.ascontiguousarray(G.Ex[self.sx, self.sy, self.sz])
Eyslice = np.ascontiguousarray(G.Ey[self.sx, self.sy, self.sz])
Ezslice = np.ascontiguousarray(G.Ez[self.sx, self.sy, self.sz])
Hxslice = np.ascontiguousarray(G.Hx[self.sx, self.sy, self.sz])
Hyslice = np.ascontiguousarray(G.Hy[self.sx, self.sy, self.sz])
Hzslice = np.ascontiguousarray(G.Hz[self.sx, self.sy, self.sz])
# Create arrays to hold the field data for snapshot
Exsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Eysnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Ezsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Hxsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Hysnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
Hzsnap = np.zeros((self.nx, self.ny, self.nz), dtype=floattype)
# Calculate field values at points (comes from averaging field components in cells)
calculate_snapshot_fields(
self.nx,
self.ny,
self.nz,
Exslice,
Eyslice,
Ezslice,
Hxslice,
Hyslice,
Hzslice,
Exsnap,
Eysnap,
Ezsnap,
Hxsnap,
Hysnap,
Hzsnap)
# Convert to format for Paraview
self.electric = np.stack((Exsnap, Eysnap, Ezsnap)).reshape(-1, order='F')
self.magnetic = np.stack((Hxsnap, Hysnap, Hzsnap)).reshape(-1, order='F')
def write_vtk_imagedata(self, pbar, G):
"""Write snapshot data to a VTK ImageData (.vti) file.
N.B. No Python 3 support for VTK at time of writing (03/2015)
Args:
pbar (class): Progress bar class instance.
G (class): Grid class instance - holds essential parameters describing the model.
"""
hfield_offset = 3 * np.dtype(floattype).itemsize * self.ncells + np.dtype(np.uint32).itemsize
self.filehandle = open(self.filename, 'wb')
self.filehandle.write('<?xml version="1.0"?>\n'.encode('utf-8'))
self.filehandle.write('<VTKFile type="ImageData" version="1.0" byte_order="{}">\n'.format(Snapshot.byteorder).encode('utf-8'))
self.filehandle.write('<ImageData WholeExtent="{} {} {} {} {} {}" Origin="0 0 0" Spacing="{:.3} {:.3} {:.3}">\n'.format(self.xs, round_value(self.xf / self.dx), self.ys, round_value(self.yf / self.dy), self.zs, round_value(self.zf / self.dz), self.dx * G.dx, self.dy * G.dy, self.dz * G.dz).encode('utf-8'))
self.filehandle.write('<Piece Extent="{} {} {} {} {} {}">\n'.format(self.xs, round_value(self.xf / self.dx), self.ys, round_value(self.yf / self.dy), self.zs, round_value(self.zf / self.dz)).encode('utf-8'))
self.filehandle.write('<CellData Vectors="E-field H-field">\n'.encode('utf-8'))
self.filehandle.write('<DataArray type="{}" Name="E-field" NumberOfComponents="3" format="appended" offset="0" />\n'.format(Snapshot.floatname).encode('utf-8'))
self.filehandle.write('<DataArray type="{}" Name="H-field" NumberOfComponents="3" format="appended" offset="{}" />\n'.format(Snapshot.floatname, hfield_offset).encode('utf-8'))
self.filehandle.write('</CellData>\n</Piece>\n</ImageData>\n<AppendedData encoding="raw">\n_'.encode('utf-8'))
# Write number of bytes of appended data as UInt32
self.filehandle.write(pack('I', self.datasizefield))
pbar.update(n=4)
self.electric.tofile(self.filehandle)
pbar.update(n=self.datasizefield)
# Write number of bytes of appended data as UInt32
self.filehandle.write(pack('I', self.datasizefield))
pbar.update(n=4)
self.magnetic.tofile(self.filehandle)
pbar.update(n=self.datasizefield)
self.filehandle.write('\n</AppendedData>\n</VTKFile>'.encode('utf-8'))
self.filehandle.close()
def gpu_initialise_snapshot_array(G):
"""Initialise array on GPU for to store field data for snapshots.
Args:
G (class): Grid class instance - holds essential parameters describing the model.
Returns:
snapE_gpu, snapH_gpu (float): numpy arrays of snapshot data on GPU.
"""
import pycuda.gpuarray as gpuarray
# Get dimensions of largest requested snapshot
for snap in G.snapshots:
if snap.nx > Snapshot.nx_max:
Snapshot.nx_max = snap.nx
if snap.ny > Snapshot.ny_max:
Snapshot.ny_max = snap.ny
if snap.nz > Snapshot.nz_max:
Snapshot.nz_max = snap.nz
# GPU - blocks per grid - according to largest requested snapshot
Snapshot.bpg = (int(np.ceil(((Snapshot.nx_max) * (Snapshot.ny_max) * (Snapshot.nz_max)) / Snapshot.tpb[0])), 1, 1)
# 4D arrays to store snapshots on GPU, e.g. snapEx(time, x, y, z)
numsnaps = 1 if G.snapsgpu2cpu else len(G.snapshots)
snapEx = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapEy = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapEz = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapHx = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapHy = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
snapHz = np.zeros((numsnaps, Snapshot.nx_max, Snapshot.ny_max, Snapshot.nz_max), dtype=floattype)
# Copy arrays to GPU
snapEx_gpu = gpuarray.to_gpu(snapEx)
snapEy_gpu = gpuarray.to_gpu(snapEy)
snapEz_gpu = gpuarray.to_gpu(snapEz)
snapHx_gpu = gpuarray.to_gpu(snapHx)
snapHy_gpu = gpuarray.to_gpu(snapHy)
snapHz_gpu = gpuarray.to_gpu(snapHz)
return snapEx_gpu, snapEy_gpu, snapEz_gpu, snapHx_gpu, snapHy_gpu, snapHz_gpu
def gpu_get_snapshot_array(snapEx_gpu, snapEy_gpu, snapEz_gpu, snapHx_gpu, snapHy_gpu, snapHz_gpu, i, snap):
"""Copy snapshot array used on GPU back to snapshot objects and store in format for Paraview.
Args:
snapE_gpu, snapH_gpu (float): numpy arrays of snapshot data from GPU.
i (int): index for snapshot data on GPU array.
snap (class): Snapshot class instance
"""
snap.electric = np.stack((snapEx_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapEy_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapEz_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf])).reshape(-1, order='F')
snap.magnetic = np.stack((snapHx_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapHy_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf],
snapHz_gpu[i, snap.xs:snap.xf, snap.ys:snap.yf, snap.zs:snap.zf])).reshape(-1, order='F')